Suppr超能文献

应用模糊神经网络于基因表达谱分析以预测弥漫性大B细胞淋巴瘤的预后

Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma.

作者信息

Ando Tatsuya, Suguro Miyuki, Hanai Taizo, Kobayashi Takeshi, Honda Hiroyuki, Seto Masao

机构信息

Department of Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

出版信息

Jpn J Cancer Res. 2002 Nov;93(11):1207-12. doi: 10.1111/j.1349-7006.2002.tb01225.x.

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long-overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF-4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy.

摘要

弥漫性大B细胞淋巴瘤(DLBCL)是侵袭性淋巴瘤中最大的类别。不到50%的患者可通过联合化疗治愈。微阵列技术最近表明,对化疗的反应反映了DLBCL中的分子异质性。基于已发表的微阵列数据,我们试图开发一种早就该有的方法,用于精确且简单地预测DLBCL患者的生存期。我们开发了一个模糊神经网络(FNN)模型来分析DLBCL的基因表达谱数据。从5857个基因的数据中,该模型识别出四个基因(CD10、AA807551、AA805611和IRF-4),它们可用于以93%的准确率预测预后。模糊神经网络是提取影响预后的重要生物标志物的强大工具,适用于任何恶性肿瘤的各种表达谱数据。

相似文献

1
Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma.
Jpn J Cancer Res. 2002 Nov;93(11):1207-12. doi: 10.1111/j.1349-7006.2002.tb01225.x.
3
4
CD10, BCL6, and MUM1 expression in diffuse large B-cell lymphoma on FNA samples.
Cancer Cytopathol. 2016 Feb;124(2):135-43. doi: 10.1002/cncy.21626. Epub 2015 Sep 28.
7
Gene expression profiling of diffuse large B-cell lymphoma.
Leuk Lymphoma. 2003;44 Suppl 3:S41-7. doi: 10.1080/10428190310001623775.
9
Expression profiling analysis of the CD5+ diffuse large B-cell lymphoma subgroup: development of a CD5 signature.
Cancer Sci. 2006 Sep;97(9):868-74. doi: 10.1111/j.1349-7006.2006.00267.x. Epub 2006 Jul 13.

引用本文的文献

2
An intelligent Bayesian hybrid approach to help autism diagnosis.
Soft comput. 2021;25(14):9163-9183. doi: 10.1007/s00500-021-05877-0. Epub 2021 May 24.
3
Non-Hodgkin Lymphomas: Malignancies Arising from Mature B Cells.
Cold Spring Harb Perspect Med. 2021 Mar 1;11(3):a034843. doi: 10.1101/cshperspect.a034843.
7
Two-dimensional matrix algorithm using detrended fluctuation analysis to distinguish Burkitt and diffuse large B-cell lymphoma.
Comput Math Methods Med. 2012;2012:947191. doi: 10.1155/2012/947191. Epub 2012 Dec 29.
10
A simple method to combine multiple molecular biomarkers for dichotomous diagnostic classification.
BMC Bioinformatics. 2006 Oct 10;7:442. doi: 10.1186/1471-2105-7-442.

本文引用的文献

1
Fuzzy neural network-based prediction of the motif for MHC class II binding peptides.
J Biosci Bioeng. 2001;92(3):227-31. doi: 10.1263/jbb.92.227.
2
Gene expression profiling predicts clinical outcome of breast cancer.
Nature. 2002 Jan 31;415(6871):530-6. doi: 10.1038/415530a.
3
Prediction of central nervous system embryonal tumour outcome based on gene expression.
Nature. 2002 Jan 24;415(6870):436-42. doi: 10.1038/415436a.
4
De novo CD5+ diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients.
Blood. 2002 Feb 1;99(3):815-21. doi: 10.1182/blood.v99.3.815.
7
The Stanford Microarray Database.
Nucleic Acids Res. 2001 Jan 1;29(1):152-5. doi: 10.1093/nar/29.1.152.
8
Role of high-dose therapy in diffuse large B-cell lymphoma.
Ann Oncol. 2000;11 Suppl 3:117-21. doi: 10.1093/annonc/11.suppl_3.117.
9
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature. 2000 Feb 3;403(6769):503-11. doi: 10.1038/35000501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验