Suppr超能文献

分区地幔对流

Zoned mantle convection.

作者信息

Albarède Francis, Van Der Hilst Rob D

机构信息

Ecole Normale Supérieure de Lyon, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2002 Nov 15;360(1800):2569-92. doi: 10.1098/rsta.2002.1081.

Abstract

We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.

摘要

我们根据地球化学和地球物理证据回顾了当前我们对幔对流的理解现状,并提出了一个关于幔对流及其在地球历史上演变的模型,该模型能够协调这些证据。全地幔对流,即使在核幔边界上方的D”区域内存在物质分异,也与氩和氦的收支以及地球热演化所需的热源总量不相容。我们表明,亲石不相容元素中的深部地幔成分与普通大洋岩石圈古老板块的储存情况不一致,即与板块墓地的概念不一致。同位素总量表明,深部地幔成分不能通过大陆碎屑、原始物质或包含正常大洋地壳的俯冲板块得到正确解释。地震学观测已开始暗示在地幔底部约1000公里范围内存在成分不均一性,但没有令人信服的证据支持在中深度处存在深浅地幔之间的界面。我们认为,在一个热化学对流系统中,岩石圈板块俯冲的深度以一种复杂的方式取决于它们的成分和热结构。下沉板块的热结构主要由汇聚方向和速率、海沟处岩石圈的年龄、下沉速率以及这些参数随时间的变化(即板块构造历史)决定,并且并非所有俯冲系统都是相同的。地幔中的下沉速率由热(负)浮力和成分浮力共同决定,关于后者,我们特别考虑了由地幔柱头部产生的玄武岩高原加载到板块上的影响。贫瘠的大洋板块相对浮力较大,可能优先在浅部地幔中再循环。负载有大洋高原的板块具有更明显的负浮力,并且更容易沉到地幔底部。高原分异仍然是统计性的,并且由于板块的多种归宿,预计不会出现明显的成分界面。我们表明,负载较重板块的可变深度俯冲可以阻止完全的垂直混合,并在地幔中保留垂直浓度梯度。此外,它可以解释深部地幔中原始物质分散残余物的保存情况,从而解释大洋岛玄武岩中的氩和³He观测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验