Gurcan Metin N, Sahiner Berkman, Petrick Nicholas, Chan Heang-Ping, Kazerooni Ella A, Cascade Philip N, Hadjiiski Lubomir
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-0904, USA.
Med Phys. 2002 Nov;29(11):2552-8. doi: 10.1118/1.1515762.
We are developing a computer-aided diagnosis (CAD) system for lung nodule detection on thoracic helical computed tomography (CT) images. In the first stage of this CAD system, lung regions are identified by a k-means clustering technique. Each lung slice is classified as belonging to the upper, middle, or the lower part of the lung volume. Within each lung region, structures are segmented again using weighted k-means clustering. These structures may include true lung nodules and normal structures consisting mainly of blood vessels. Rule-based classifiers are designed to distinguish nodules and normal structures using 2D and 3D features. After rule-based classification, linear discriminant analysis (LDA) is used to further reduce the number of false positive (FP) objects. We performed a preliminary study using 1454 CT slices from 34 patients with 63 lung nodules. When only LDA classification was applied to the segmented objects, the sensitivity was 84% (53/63) with 5.48 (7961/1454) FP objects per slice. When rule-based classification was used before LDA, the free response receiver operating characteristic (FROC) curve improved over the entire sensitivity and specificity ranges of interest. In particular, the FP rate decreased to 1.74 (2530/1454) objects per slice at the same sensitivity. Thus, compared to FP reduction with LDA alone, the inclusion of rule-based classification lead to an improvement in detection accuracy for the CAD system. These preliminary results demonstrate the feasibility of our approach to lung nodule detection and FP reduction on CT images.
我们正在开发一种用于在胸部螺旋计算机断层扫描(CT)图像上检测肺结节的计算机辅助诊断(CAD)系统。在该CAD系统的第一阶段,通过k均值聚类技术识别肺区域。每个肺切片被分类为属于肺容积的上部、中部或下部。在每个肺区域内,再次使用加权k均值聚类对结构进行分割。这些结构可能包括真正的肺结节和主要由血管组成的正常结构。基于规则的分类器旨在使用二维和三维特征区分结节和正常结构。在基于规则的分类之后,使用线性判别分析(LDA)进一步减少假阳性(FP)对象的数量。我们使用来自34例患有63个肺结节的患者的1454个CT切片进行了一项初步研究。当仅将LDA分类应用于分割后的对象时,灵敏度为84%(53/63),每切片有5.48个(7961/1454)FP对象。当在LDA之前使用基于规则的分类时,在整个感兴趣的灵敏度和特异性范围内,自由响应接收者操作特征(FROC)曲线得到了改善。特别是,在相同灵敏度下,FP率降至每切片1.74个(2530/1454)对象。因此,与仅使用LDA减少FP相比,纳入基于规则的分类导致CAD系统的检测准确性得到提高。这些初步结果证明了我们在CT图像上检测肺结节和减少FP的方法的可行性。