Gorelova Natalia, Seamans Jeremy K, Yang Charles R
Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada.
J Neurophysiol. 2002 Dec;88(6):3150-66. doi: 10.1152/jn.00335.2002.
Prefrontal cortical dopamine (DA) modulates pyramidal cell excitability directly and indirectly by way of its actions on local circuit GABAergic interneurons. DA modulation of interneuronal functions is implicated in the computational properties of prefrontal networks during cognitive processes and in schizophrenia. Morphologically and electrophysiologically distinct classes of putative GABAergic interneurons are found in layers II-V of rat prefrontal cortex. Our whole cell patch-clamp study shows that DA induced a direct, TTX-insensitive, reversible membrane depolarization, and increased the excitability of fast-spiking (FS) interneurons. The DA-induced membrane depolarization was reduced significantly by D1/D5 receptor antagonist SCH 23390, but not by the D2 receptor antagonist (-)sulpiride, D4 receptor antagonists U101958 or L-745870, alpha1-adrenoreceptor antagonist prazosin, or serotoninergic receptor antagonist mianserin. The D1/5 agonists SKF81297 or dihydrexidine, but not D2 agonist quinpirole, also induced a prolonged membrane depolarization. Voltage-clamp analyses of the voltage-dependence of DA-sensitive currents, and the effects of changing K(+) on reversal potentials of DA responses, revealed that DA suppressed a Cs(+)-sensitive inward rectifier K(+) current and a resting leak K(+) current. D1/D5, but not D2 agonists mimicked the suppressive effects of DA on the leak current, but the DA effects on the inward rectifier K(+) current were not mimicked by either agonist. In a subgroup of FS interneurons, the slowly inactivating membrane outward rectification evoked by depolarizing voltage steps was also attenuated by DA. Collectively, these data showed that DA depolarizes FS interneurons by suppressing a voltage-independent 'leak' K(+) current (via D1/D5 receptor mechanism) and an inwardly rectifying K(+) current (via unknown DA mechanisms). Additional suppression of a slowly inactivating K(+) current led to increase in repetitive firing in response to depolarizing inputs. This D1-induced increase in interneuron excitability enhances GABAergic transmission to PFC pyramidal neurons and could represent a mechanism via which DA suppresses persistent firing of pyramidal neurons in vivo.
前额叶皮质多巴胺(DA)通过作用于局部回路的γ-氨基丁酸(GABA)能中间神经元直接或间接地调节锥体细胞的兴奋性。DA对中间神经元功能的调节与认知过程中前额叶网络的计算特性以及精神分裂症有关。在大鼠前额叶皮质的II-V层中发现了形态和电生理特性不同的假定GABA能中间神经元类别。我们的全细胞膜片钳研究表明,DA诱导了一种直接的、对河豚毒素(TTX)不敏感的、可逆的膜去极化,并增加了快速放电(FS)中间神经元的兴奋性。DA诱导的膜去极化被D1/D5受体拮抗剂SCH 23390显著降低,但未被D2受体拮抗剂(-)舒必利、D4受体拮抗剂U101958或L-745870、α1-肾上腺素能受体拮抗剂哌唑嗪或5-羟色胺能受体拮抗剂米安色林降低。D1/5激动剂SKF81297或二氢麦角隐亭,但不是D2激动剂喹吡罗,也诱导了长时间的膜去极化。对DA敏感电流的电压依赖性进行电压钳分析,以及改变细胞外钾离子浓度(K(+))对DA反应反转电位的影响,揭示了DA抑制了一种对铯离子(Cs(+))敏感的内向整流钾离子电流和一种静息漏电钾离子电流。D1/D5激动剂,但不是D2激动剂,模拟了DA对漏电电流的抑制作用,但两种激动剂均未模拟DA对内向整流钾离子电流的作用。在FS中间神经元的一个亚组中,去极化电压阶跃诱发的缓慢失活的膜外向整流也被DA减弱。总体而言,这些数据表明,DA通过抑制电压非依赖性的“漏电”钾离子电流(通过D1/D5受体机制)和内向整流钾离子电流(通过未知的DA机制)使FS中间神经元去极化。对缓慢失活钾离子电流的额外抑制导致对去极化输入的重复放电增加。这种由D1诱导的中间神经元兴奋性增加增强了向PFC锥体细胞的GABA能传递,并且可能代表了DA在体内抑制锥体细胞持续放电的一种机制。
J Neurophysiol. 2005-3
Proc Natl Acad Sci U S A. 2025-7
Front Pharmacol. 2023-10-25