Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Mol Psychiatry. 2024 May;29(5):1265-1280. doi: 10.1038/s41380-024-02408-9. Epub 2024 Jan 16.
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
早期和进行性的腹侧被盖区(VTA)多巴胺能系统功能障碍已在阿尔茨海默病(AD)中被描述。在漫长的无症状前阶段,也观察到 Parvalbumin 中间神经元(PV-INs)功能的改变,导致皮质兴奋性过高,表现为亚临床癫痫和异常的伽马振荡。然而,尚不清楚多巴胺能缺陷是否导致 AD 中的大脑兴奋性过高。在这里,我们使用 AD 的 Tg2576 小鼠模型证明,由于 VTA 多巴胺神经元变性导致的海马多巴胺能传入减少,会损害 PV-IN 放电和伽马波,削弱锥体神经元的抑制,并通过降低 D2 受体介导的 CREB 通路激活来诱导海马兴奋性过高。这些改变与 PV-IN 数量减少和 Perineuronal Net 密度降低同时发生。重要的是,L-DOPA 和选择性 D2 受体激动剂喹吡罗尔可恢复 p-CREB 水平并改善 PV-IN 介导的抑制,从而降低兴奋性过高。此外,与喹吡罗尔类似,sumanirole - 另一种 D2 受体激动剂和已知的抗惊厥药 - 不仅增加了 PV-IN 中的 p-CREB 水平,而且还恢复了 Tg2576 小鼠中的伽马振荡。相反,用 sulpiride(一种 D2 样受体拮抗剂)阻断 WT 小鼠中的多巴胺能传递会降低 PV-IN 中的 p-CREB 水平,模拟 Tg2576 中发生的情况。总的来说,这些发现支持了 VTA 多巴胺能系统完整性在海马 PV-IN 功能和存活中发挥关键作用的假说,揭示了减少的多巴胺能张力对异常伽马波、早期 AD 中海马兴奋性过高和癫痫样活动的相关贡献。
Neuropsychopharmacology. 2025-2-27
Neurobiol Learn Mem. 2023-7
Front Aging Neurosci. 2022-12-15
Front Psychiatry. 2022-10-17
Front Integr Neurosci. 2022-5-25
Eur Arch Psychiatry Clin Neurosci. 2023-2