Suppr超能文献

使用统计建模预测引物延伸基因分型分析的成功率。

Predicting the success of primer extension genotyping assays using statistical modeling.

作者信息

Yuryev Anton, Huang JianPing, Pohl Mark, Patch Robert, Watson Felicia, Bell Peter, Donaldson Miriam, Phillips Michael S, Boyce-Jacino Michael T

机构信息

Orchid Biosciences, Orchid Life Sciences, 303 East College Road, Princeton, NJ 08540, USA.

出版信息

Nucleic Acids Res. 2002 Dec 1;30(23):e131. doi: 10.1093/nar/gnf131.

Abstract

Using an empirical panel of more than 20 000 single base primer extension (SNP-IT) assays we have developed a set of statistical scores for evaluating and rank ordering various parameters of the SNP-IT reaction to facilitate high-throughput assay primer design with improved likelihood of success. Each score predicts either signal magnitude from primer extension or signal noise caused by mispriming of primers and structure of the PCR product. All scores have been shown to correlate with the success/failure rate of the SNP-IT reaction, based on analysis of assay results. A logistic regression analysis was applied to combine all scored parameters into one measure predicting the overall success/failure rate of a given SNP marker. Three training sets for different types of SNP-IT reaction, each containing about 22 000 SNP markers, were used to assign weights to each score and optimize the prediction of the combined measure. c-Statistics of 0.69, 0.77 and 0.72 were achieved for three training sets. This new statistical prediction can be used to improve primer design for the SNP-IT reaction and evaluate the probability of genotyping success for a given SNP based on analysis of the surrounding genomic sequence.

摘要

我们使用了一个包含20000多个单碱基引物延伸(SNP-IT)检测的经验性面板,开发了一组统计分数,用于评估SNP-IT反应的各种参数并进行排名,以促进高通量检测引物设计,提高成功的可能性。每个分数要么预测引物延伸产生的信号强度,要么预测引物错配和PCR产物结构导致的信号噪声。基于检测结果分析,所有分数均已证明与SNP-IT反应的成功/失败率相关。应用逻辑回归分析将所有评分参数合并为一个指标,以预测给定SNP标记的总体成功/失败率。针对不同类型的SNP-IT反应,使用了三个训练集,每个训练集包含约22000个SNP标记,用于为每个分数赋予权重并优化组合指标的预测。三个训练集的c统计量分别为0.69、0.77和0.72。这种新的统计预测可用于改进SNP-IT反应的引物设计,并基于对周围基因组序列的分析评估给定SNP基因分型成功的概率。

相似文献

3
Developing a statistical model for primer design.
Methods Mol Biol. 2007;402:105-38. doi: 10.1007/978-1-59745-528-2_6.
10
SNP genotyping using Sequenom MassARRAY 7K platform.使用Sequenom MassARRAY 7K平台进行单核苷酸多态性基因分型。
Curr Protoc Hum Genet. 2004 Sep;Chapter 2:Unit 2.12. doi: 10.1002/0471142905.hg0212s42.

引用本文的文献

2
URPD: a specific product primer design tool.URPD:一种特定的产品引物设计工具。
BMC Res Notes. 2012 Jun 19;5:306. doi: 10.1186/1756-0500-5-306.
3
Optimization of turn-back primers in isothermal amplification.回环引物在等温扩增中的优化。
Nucleic Acids Res. 2011 May;39(9):e59. doi: 10.1093/nar/gkr041. Epub 2011 Feb 9.
4
Predicting failure rate of PCR in large genomes.预测大基因组中聚合酶链式反应(PCR)的失败率。
Nucleic Acids Res. 2008 Jun;36(11):e66. doi: 10.1093/nar/gkn290. Epub 2008 May 20.

本文引用的文献

10
Thermodynamics of internal C.T mismatches in DNA.DNA内部C.T错配的热力学
Nucleic Acids Res. 1998 Jun 1;26(11):2694-701. doi: 10.1093/nar/26.11.2694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验