Suppr超能文献

使用骨骼耦合可变形模型从CT图像中分割腕骨

Segmentation of carpal bones from CT images using skeletally coupled deformable models.

作者信息

Sebastian Thomas B, Tek Hüseyin, Crisco Joseph J, Kimia Benjamin B

机构信息

LEMS, Division of Engineering, Brown University, Providence, RI 02912, USA.

出版信息

Med Image Anal. 2003 Mar;7(1):21-45. doi: 10.1016/s1361-8415(02)00065-8.

Abstract

The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, small inter-bone spaces compared to the resolution of CT images, along with the presence of blood vessels, and the inherent blurring of CT imaging render the segmentation of carpal bones a challenging task. We review the performance of statistical classification, deformable models (active contours), region growing, region competition, and morphological operations for this application. We then propose a model which combines several of these approaches in a unified framework. Specifically, our approach is to use a curve evolution implementation of region growing from initialized seeds, where growth is modulated by a skeletally-mediated competition between neighboring regions. The inter-seed skeleton, which we interpret as the predicted boundary of collision between two regions, is used to couple the growth of seeds and to mediate long-range competition between them. The implementation requires subpixel representations of each growing region as well as the inter-region skeleton. This method combines the advantages of active contour models, region growing, and both local and global region competition methods. We demonstrate the effectiveness of this approach for our application where many of the difficulties presented above are overcome as illustrated by synthetic and real examples. Since this segmentation method does not rely on domain-specific knowledge, it should be applicable to a range of other medical imaging segmentation tasks.

摘要

对正常和受伤手腕的关节运动学进行体内研究,需要从三维(CT)图像中分割出腕骨,并对其进行随时间的配准。骨组织的不均匀性,从致密的皮质骨到有纹理的海绵骨,紧密排列的腕骨形状不规则,与CT图像分辨率相比骨间间隙较小,再加上血管的存在以及CT成像固有的模糊性,使得腕骨的分割成为一项具有挑战性的任务。我们回顾了统计分类、可变形模型(活动轮廓)、区域生长、区域竞争和形态学操作在该应用中的性能。然后,我们提出了一个在统一框架中结合了这些方法中的几种的模型。具体来说,我们的方法是使用从初始化种子开始的区域生长的曲线演化实现,其中生长由相邻区域之间的骨骼介导竞争进行调节。种子间骨骼,我们将其解释为两个区域之间碰撞的预测边界,用于耦合种子的生长并介导它们之间的远程竞争。该实现需要每个生长区域以及区域间骨骼的亚像素表示。这种方法结合了活动轮廓模型、区域生长以及局部和全局区域竞争方法的优点。我们通过合成和实际示例说明了该方法在我们的应用中的有效性,其中克服了上述许多困难。由于这种分割方法不依赖于特定领域的知识,它应该适用于一系列其他医学成像分割任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验