Suppr超能文献

Synthesis and characterization of 6-chloroacetyl-2-dimethylaminonaphthalene as a fluorogenic substrate and a mechanistic probe for glutathione transferases.

作者信息

Svensson Richard, Grenö Caroline, Johansson Ann-Sofie, Mannervik Bengt, Morgenstern Ralf

机构信息

Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.

出版信息

Anal Biochem. 2002 Dec 15;311(2):171-8. doi: 10.1016/s0003-2697(02)00406-2.

Abstract

Here we demonstrate that the thiol-reactive, environmentally sensitive fluorogenic molecules 6-bromoacetyl-2-dimethylaminonaphthalene and 6-acryloyl-2-dimethylaminonaphthalene are substrates for glutathione transferases (GSTs). Product formation can be measured by strong increase in fluorescence of the glutathione conjugate. As these substances display a high nonenzymatic background reaction rate, we have synthesized and characterized 6-chloroacetyl-2-dimethylaminonaphthalene, which is less reactive, favoring the enzyme-catalyzed reaction. 6-Chloroacetyl-2-dimethylaminonaphthalene was found to be a substrate for all GSTs tested. Apparent k(cat)/K(m) values (ranging between 10 and 500 mM(-1)s(-1)) revealed a strong preference for soluble GSTP1-1, GSTA1-1, and activated MGST1. Thus, 6-chloroacetyl-2-dimethylaminonaphthalene can be used in a highly sensitive assay of these GSTs. 6-Acetyl-2-dimethylaminonaphthalene derivatives are very sensitive toward solvent polarity and potentially also toward properties of binding sites in proteins. Upon binding of the conjugate to GSTs the fluorescence intensity decreased and the emission maximum was blue-shifted. Therefore the interaction of the conjugate with GSTs can be characterized with regard to both binding affinity and kinetics by stopped-flow measurements, and 6-chloroacetyl-2-dimethylaminonaphthalene can be a valuable aid in mechanistic investigations of GSTs, especially those which possess low intrinsic fluorescence.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验