Suppr超能文献

Absence of global genomic cytosine methylation pattern erasure during medaka (Oryzias latipes) early embryo development.

作者信息

Walter Ronald B, Li Hai-Ying, Intano Gabriel W, Kazianis Steven, Walter Christi A

机构信息

Department of Chemistry and Biochemistry, Southwest Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX 78666-4616, USA.

出版信息

Comp Biochem Physiol B Biochem Mol Biol. 2002 Dec;133(4):597-607. doi: 10.1016/s1096-4959(02)00144-6.

Abstract

Two techniques were used to analyze global genomic 5-methyl cytosine methylation at CCGG sites of medaka embryo DNA. DNA was labeled by incorporation of microinjected radiolabeled deoxynucleotide into one-cell embryos. After Hpa II or Msp I digestion the radiolabeled DNA was fractionated in agarose gels and the distribution of label quantified throughout each sample lane to detect differences in fragment distribution. Alternately isolated DNA was digested with Hpa II or Msp I and the resulting generated termini end-labeled. The end-labeled digestion products were then analyzed for fragment distribution after gel fractionation. These techniques proved to be extremely sensitive, allowing comparison of genomic DNA methylation values from as few as 640 fish cells. The data suggest that in medaka embryos the vast majority (>90%) of genomic DNA is methylated at CCGG sites. Furthermore, these data support the conclusion that the extent of methylation at these sites does not change or changes very little during embryogenesis (from 16 cells to the hatchling). These data argue against active demethylation, or loss of methylation patterns by dilution, during the developmental stages between the one cell zygote and gastrulation. From a comparative viewpoint, these data may indicate that mammals and fishes methylate and demethylate their genomes in very different manners during development.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验