Walter S
Institut für Organische Chemie and Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
Cell Mol Life Sci. 2002 Oct;59(10):1589-97. doi: 10.1007/pl00012485.
The Escherichia coli proteins GroEL and GroES were the first chaperones to be studied in detail and have thus become a role model for assisted protein folding in general. A wealth of both structural and functional data on the GroE system has been accumulated over the past years, enabling us now to understand the basic principles of how this fascinating protein-folding machine accomplishes its task. According to the current model, GroE processes a nonnative polypeptide in a cycle consisting of three steps. First, the polypeptide substrate is captured by GroEL. Upon binding of the co-chaperone GroES and ATP, the substrate is then discharged into a unique microenvironment inside of the chaperone, which promotes productive folding. After hydrolysis of ATP, the polypeptide is released into solution. Moreover, GroE may actively increase the folding efficiency, e.g. by unfolding of misfolded protein molecules. The mechanisms underlying these features, however, are yet not well characterized.
大肠杆菌蛋白GroEL和GroES是最早被详细研究的分子伴侣,因此成为了一般辅助蛋白质折叠的典范。在过去几年里,已经积累了大量关于GroE系统的结构和功能数据,使我们现在能够理解这个迷人的蛋白质折叠机器是如何完成其任务的基本原理。根据目前的模型,GroE通过一个由三个步骤组成的循环来处理非天然多肽。首先,多肽底物被GroEL捕获。在共分子伴侣GroES和ATP结合后,底物随后被释放到分子伴侣内部一个独特的微环境中,这促进了有效的折叠。ATP水解后,多肽被释放到溶液中。此外,GroE可能会积极提高折叠效率,例如通过解开错误折叠的蛋白质分子。然而,这些特征背后的机制尚未得到很好的表征。