Fisher M T
Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA.
Biochemistry (Mosc). 1998 Apr;63(4):382-98.
The folding and assembly of Escherichia coli dodecameric glutamine synthetase is facilitated by the E. coli GroE chaperonins, GroEL and GroES. Since endogenous glutamine synthetase monomers are bound to GroEL immediately after cell lysis and are assembly competent, this strongly suggests that glutamine synthetase is an authentic substrate of the GroE chaperonins. At physiological temperatures, the in vitro reactivation of glutamine synthetase increases from 10 to 70-80% of the original activity when the chaperonin GroEL is included. Although nucleotide binding is sufficient to dissociate assembly competent glutamine synthetase monomers from GroEL, the addition of GroES substantially accelerates the dissociation, assembly, and reactivation. The interactions of glutamine synthetase monomers with the activated chaperonin are transient (t1/2 = 10 sec) and these monomers can be released from GroEL at high concentrations without misfolding or inappropriate aggregation. It has been found that the nucleotide-induced conformational change of GroEL is critical for folding success of glutamine synthetase because the simple displacement of glutamine synthetase monomers from the GroEL chaperonin with another protein substrate inhibits reactivation. During glutamine synthetase refolding, the "high affinity" nucleotide-free GroEL is most efficient in preventing initial folding intermediates from partitioning to off-pathway folding routes. Interestingly, the more physiologically relevant "low affinity" nucleotide-bound ((ATP/ADP) GroEL--GroES) complex is not as efficient at capturing the initial folding intermediates of glutamine synthetase. In contrast to glutamine synthetase, non-authentic "model" substrates such as mammalian mitochondrial rhodanese and mitochondrial malate dehydrogenase show no differences in folding efficiencies with either the "low affinity" or "high affinity" complexes. Besides the nature of the chaperonin complex itself, the mechanism of GroE-assisted folding is determined by the folding environment and, most importantly, by initial interactions of chaperonins with folding intermediates. Glutamine synthetase interacts only transiently with chaperonin complexes, while most of the "model" proteins exhibit relatively long interactions times. It may be indicative of a specific evolutionary selected mechanism of chaperonin-assisted folding (optimizing the folding kinetics), different from that observed with non-authentic chaperonin substrates. Since the kinetics of protein folding depends heavily on the solution environment, studies involving in vivo chaperonin substrates under conditions that closely mimic those found in the cell will be required to define and solve the physiologically relevant kinetic mechanism of chaperonin-assisted folding.
大肠杆菌十二聚体谷氨酰胺合成酶的折叠和组装由大肠杆菌伴侣蛋白GroEL和GroES促进。由于内源性谷氨酰胺合成酶单体在细胞裂解后立即与GroEL结合且具有组装能力,这有力地表明谷氨酰胺合成酶是GroE伴侣蛋白的真正底物。在生理温度下,当包含伴侣蛋白GroEL时,谷氨酰胺合成酶的体外再激活率从原始活性的10%提高到70 - 80%。虽然核苷酸结合足以使具有组装能力的谷氨酰胺合成酶单体从GroEL上解离,但添加GroES会显著加速解离、组装和再激活。谷氨酰胺合成酶单体与活化的伴侣蛋白的相互作用是短暂的(半衰期 = 10秒),并且这些单体可以在高浓度下从GroEL释放而不会错误折叠或不适当聚集。已经发现GroEL的核苷酸诱导的构象变化对于谷氨酰胺合成酶的折叠成功至关重要,因为用另一种蛋白质底物简单地将谷氨酰胺合成酶单体从GroEL伴侣蛋白上置换会抑制再激活。在谷氨酰胺合成酶重折叠过程中,“高亲和力”的无核苷酸GroEL在防止初始折叠中间体进入错误折叠途径方面最有效。有趣的是,生理相关性更强的“低亲和力”核苷酸结合的((ATP/ADP) GroEL - GroES)复合物在捕获谷氨酰胺合成酶的初始折叠中间体方面效率不高。与谷氨酰胺合成酶不同,非真实的“模型”底物,如哺乳动物线粒体硫氰酸酶和线粒体苹果酸脱氢酶,在与“低亲和力”或“高亲和力”复合物的折叠效率上没有差异。除了伴侣蛋白复合物本身的性质外,GroE辅助折叠的机制还由折叠环境决定,最重要的是由伴侣蛋白与折叠中间体的初始相互作用决定。谷氨酰胺合成酶仅与伴侣蛋白复合物短暂相互作用,而大多数“模型”蛋白表现出相对较长的相互作用时间。这可能表明伴侣蛋白辅助折叠的一种特定进化选择机制(优化折叠动力学),与在非真实伴侣蛋白底物中观察到的不同。由于蛋白质折叠动力学在很大程度上取决于溶液环境,因此需要在紧密模拟细胞内条件的情况下研究体内伴侣蛋白底物,以定义和解决伴侣蛋白辅助折叠的生理相关动力学机制。