Suppr超能文献

反式二氢(二胺)钌II配合物催化酮氢化反应的机理

Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes.

作者信息

Abdur-Rashid Kamaluddin, Clapham Sean E, Hadzovic Alen, Harvey Jeremy N, Lough Alan J, Morris Robert H

机构信息

Department of Chemistry, Davenport Laboratories, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada.

出版信息

J Am Chem Soc. 2002 Dec 18;124(50):15104-18. doi: 10.1021/ja016817p.

Abstract

The complexes trans-RuH(Cl)(tmen)(R-binap) (1) and (OC-6-43)-RuH(Cl)(tmen)(PPh(3))(2) (2) are prepared by the reaction of the diamine NH(2)CMe(2)CMe(2)NH(2) (tmen) with RuH(Cl)(PPh(3))(R-binap) and RuH(Cl)(PPh(3))(3), respectively. Reaction of KHB(sec)Bu(3) with 1 yields trans-Ru(H)(2)(R-binap)(tmen) (5) while reaction of KHB(sec)Bu(3) or KO(t)Bu with 2 under Ar yields the new hydridoamido complex RuH(PPh(3))(2)(NH(2)CMe(2)CMe(2)NH) (4). Complex 4 has a distorted trigonal bipyramidal geometry with the amido nitrogen in the equatorial plane. Loss of H(2) from 5 results in the related complex RuH(R-binap)(NH(2)CMe(2)CMe(2)NH) (3). Reaction of H(2) with 4 yields the trans-dihydride (OC-6-22)-Ru(H)(2)(PPh(3))(2)(tmen)(6). Calculations support the assignment of the structures. The hydrogenation of acetophenone is catalyzed by 5 or 4 in benzene or 2-propanol without the need for added base. For 5 in benzene at 293 K over the ranges of concentrations [5] = 10(-)(4) to 10(-)(3) M, [ketone] = 0.1 to 0.5 M, and of pressures of H(2) = 8 to 23 atm, the rate law is rate = k[5][H(2)] with k = 3.3 M(-1) s(1), DeltaH++ = 8.5 +/- 0.5 kcal mol(-1), DeltaS++ = -28 +/- 2 cal mol(-1) K(-1). For 4 in benzene at 293 K over the ranges of concentrations [4] = 10(-4) to 10(-3) M, [ketone] 0.1 to 0.7 M, and of pressures of H(2) = 1 to 6 atm, the preliminary rate law is rate = k[4][H(2)] with k = 1.1 x 10(2) M(-1) s(-1), DeltaH++ = 7.6 +/- 0.3 kcal mol(-1), DeltaS++ = -23 +/- 1 cal mol(-1) K(-1). Both theory and experiment suggest that the intramolecular heterolytic splitting of dihydrogen across the polar Ru=N bond of the amido complexes 3 and 4 is the turn-over limiting step. A transition state structure and reaction energy profile is calculated. The transfer of H(delta+)/H(delta-) to the ketone from the RuH and NH groups of 5 in a Noyori metal-ligand bifunctional mechanism is a fast process and it sets the chirality as (R)-1-phenylethanol (62-68% ee) in the hydrogenation of acetophenone. The rate of hydrogenation of acetophenone catalyzed by 5 is slower and the ee of the product is low (14% S) when 2-propanol is used as the solvent, but both the rate and ee (up to 55% R) increase when excess KO(t)Bu is added. The formation of ruthenium alkoxide complexes in 2-propanol might explain these observations. Alkoxide complexes [RuP(2)]H(OR)(tmen), [RuP(2)] = Ru(R-binap) or Ru(PPh(3))(2), R= (i) Pr, CHPhMe, (t)Bu, are observed by reacting the alcohols (i)PrOH, phenylethanol, and (t)BuOH with the dihydrides 5 and 6, respectively, under Ar. In the absence of H(2), the amido complexes 3 and 4 react with acetophenone to give the ketone adducts [RuP(2)]H(O=CPhMe)(NH(2)CMe(2)CMe(2)NH) in equilibrium with the enolate complexes trans- RuP(2)(OCPh=CH(2))(tmen) and eventually the decomposition products [RuP(2)]H(eta(5)-CH(2)CPhCHCPhO), with the binap complex characterized crystallographically. In general, proton transfer from the weakly acidic molecules dihydrogen, alcohol, or acetophenone to the amido nitrogen of complexes 3 and 4 is favored in two ways when the molecule coordinates to ruthenium: (1) an increase in acidity of the molecule by the Lewis acidic metal and (2) an increase in the basicity of the amido nitrogen caused by its pyramidalization. The formato complexes trans-[RuP(2)]H(OCHO)(tmen) were prepared by reacting the respective complex 4 or 5 with formic acid. The crystal structure of RuH(OCHO)(PPh(3))(2)(tmen) displays similar features to the calculated transition state for H(delta+)/H(delta-) transfer to the ketone in the catalytic cycle.

摘要

配合物反式-RuH(Cl)(tmen)(R-binap) (1) 和(OC-6-43)-RuH(Cl)(tmen)(PPh(3))(2) (2) 分别通过二胺NH(2)CMe(2)CMe(2)NH(2) (tmen) 与RuH(Cl)(PPh(3))(R-binap) 和RuH(Cl)(PPh(3))(3) 反应制备。KHB(sec)Bu(3) 与1反应生成反式-Ru(H)(2)(R-binap)(tmen) (5),而KHB(sec)Bu(3) 或KO(t)Bu 在氩气氛围下与2反应生成新的氢化氨基配合物RuH(PPh(3))(2)(NH(2)CMe(2)CMe(2)NH) (4)。配合物4具有扭曲的三角双锥几何构型,氨基氮位于赤道平面。5失去H(2) 生成相关配合物RuH(R-binap)(NH(2)CMe(2)CMe(2)NH) (3)。H(2) 与4反应生成反式二氢化物(OC-6-22)-Ru(H)(2)(PPh(3))(2)(tmen)(6)。计算结果支持了结构的归属。在苯或2-丙醇中,5或4可催化苯乙酮的氢化反应,无需添加碱。对于5在苯中于293 K,在浓度范围[5] = 10(-)(4) 至10(-)(3) M、[酮] = 0.1至0.5 M以及H(2) 压力为8至23 atm的条件下,速率方程为速率 = k[5][H(2)],其中k = 3.3 M(-1) s(1),ΔH++ = 8.5 ± 0.5 kcal mol(-1),ΔS++ = -28 ± 2 cal mol(-1) K(-1)。对于4在苯中于293 K,在浓度范围[4] = 10(-4) 至10(-3) M、[酮] 0.1至0.7 M以及H(2) 压力为1至6 atm的条件下,初步速率方程为速率 = k[4][H(2)],其中k = 1.1 x 10(2) M(-1) s(-1),ΔH++ = 7.6 ± 0.3 kcal mol(-1),ΔS++ = -23 ± 1 cal mol(-1) K(-1)。理论和实验均表明,二氢分子在氨基配合物3和4的极性Ru=N键上进行分子内异裂裂解是周转限制步骤。计算出了过渡态结构和反应能量剖面图。在Noyori金属-配体双功能机理中,5的RuH和NH基团向酮转移H(δ+)/H(δ-) 是一个快速过程,并且在苯乙酮氢化反应中使手性产物为(R)-1-苯乙醇(对映体过量62 - 68%)。当使用2-丙醇作为溶剂时,5催化苯乙酮氢化反应的速率较慢且产物的对映体过量较低(14% S),但当加入过量KO(t)Bu时,速率和对映体过量(高达55% R)均增加。在2-丙醇中形成钌醇盐配合物可能解释了这些现象。通过使醇类异丙醇、苯乙醇和叔丁醇分别在氩气氛围下与二氢化物5和6反应,观察到醇盐配合物[RuP(2)]H(OR)(tmen)([RuP(2)] = Ru(R-binap) 或Ru(PPh(3))(2),R = (i)Pr、CHPhMe、(t)Bu)。在没有H(2) 的情况下,氨基配合物3和4与苯乙酮反应生成酮加合物[RuP(2)]H(O=CPhMe)(NH(2)CMe(2)CMe(2)NH),与烯醇盐配合物反式-RuP(2)(OCPh=CH(2))(tmen) 处于平衡状态,最终生成分解产物[RuP(2)]H(η(5)-CH(2)CPhCHCPhO),其中联萘配合物通过晶体学表征。一般来说,当分子与钌配位时,从弱酸性分子二氢、醇或苯乙酮向配合物3和4的氨基氮转移质子在两个方面是有利的:(1) 路易斯酸性金属使分子酸性增加;(2) 氨基氮的锥体化导致其碱性增加。通过使相应的配合物4或5与甲酸反应制备了反式-[RuP(2)]H(OCHO)(tmen) 甲酸盐配合物。RuH(OCHO)(PPh(3))(2)(tmen) 的晶体结构显示出与催化循环中H(δ+)/H(δ-) 转移到酮的计算过渡态相似的特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验