Allen Simon, Heath Paul Roy, Kirby Janine, Wharton Stephen Barrie, Cookson Mark Robert, Menzies Fiona Mhairi, Banks Rosamonde Elizabeth, Shaw Pamela Jean
Academic Unit of Neurology, Division of Genomic Medicine, University of Sheffield, S10 2RX, United Kingdom.
J Biol Chem. 2003 Feb 21;278(8):6371-83. doi: 10.1074/jbc.M209915200. Epub 2002 Dec 9.
Injury to motor neurons associated with mutant Cu,Zn-superoxide dismutase (SOD1)-related familial amyotrophic lateral sclerosis (FALS) results from a toxic gain-of-function of the enzyme. The mechanisms by which alterations to SOD1 elicit neuronal death remain uncertain despite intensive research effort. Analysis of the cellular proteins that are differentially expressed in the presence of mutant SOD1 represents a novel approach to investigate further this toxic gain-of-function. By using the motor neuron-like cell line NSC34 stably transfected with wild-type, G93A, or G37R mutant human SOD1, we investigated the effects of mutant human SOD1 on protein expression using proteomic approaches. Seven up-regulated proteins were identified as argininosuccinate synthase, argininosuccinate lyase, neuronal nitric-oxide synthase, RNA-binding motif protein 3, peroxiredoxin I, proteasome subunit beta 5 (X), and glutathione S-transferase (GST) Alpha 2. Seven down-regulated proteins were identified as GST Mu 1, GST Mu 2, GST Mu 5, a hypothetical GST Mu, GST Pi B, leukotriene B(4) 12-hydroxydehydrogenase, and proteasome subunit beta5i (LMP7). GST assays demonstrated a significant reduction in the total GST activity of cells expressing mutant human SOD1. Proteasome assays demonstrated significant reductions in chymotrypsin-like, trypsin-like, and post-glutamylhydrolase proteasome activities. Laser capture microdissection of spinal cord motor neurons from human FALS cases, in conjunction with reverse transcriptase-PCR, demonstrated decreased levels of mRNA encoding GST Mu 1, leukotriene B(4) 12-hydroxydehydrogenase, and LMP7. These combined approaches provide further evidence for involvement of alterations in antioxidant defenses, proteasome function, and nitric oxide metabolism in the pathophysiology of FALS.
与突变型铜锌超氧化物歧化酶(SOD1)相关的家族性肌萎缩侧索硬化症(FALS)中运动神经元的损伤是由该酶的毒性功能获得所致。尽管进行了大量研究,但SOD1改变引发神经元死亡的机制仍不明确。分析在突变型SOD1存在时差异表达的细胞蛋白质是进一步研究这种毒性功能获得的一种新方法。通过使用稳定转染野生型、G93A或G37R突变型人SOD1的运动神经元样细胞系NSC34,我们采用蛋白质组学方法研究了突变型人SOD1对蛋白质表达的影响。七种上调的蛋白质被鉴定为精氨琥珀酸合酶、精氨琥珀酸裂解酶、神经元型一氧化氮合酶、RNA结合基序蛋白3、过氧化物酶体增殖物激活受体I、蛋白酶体亚基β5(X)和谷胱甘肽S-转移酶(GST)α2。七种下调的蛋白质被鉴定为GST Mu 1、GST Mu 2、GST Mu 5、一种假定的GST Mu、GST Pi B、白三烯B(4)12-羟脱氢酶和蛋白酶体亚基β5i(LMP7)。GST测定表明,表达突变型人SOD1的细胞的总GST活性显著降低。蛋白酶体测定表明,胰凝乳蛋白酶样、胰蛋白酶样和谷氨酰胺后水解酶蛋白酶体活性显著降低。对人类FALS病例脊髓运动神经元进行激光捕获显微切割,并结合逆转录酶-PCR,结果表明编码GST Mu 1、白三烯B(4)12-羟脱氢酶和LMP7的mRNA水平降低。这些综合方法为抗氧化防御、蛋白酶体功能和一氧化氮代谢改变参与FALS的病理生理学提供了进一步证据。