Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain.
Int J Mol Sci. 2021 Jul 30;22(15):8194. doi: 10.3390/ijms22158194.
In recent years, the "non-autonomous motor neuron death" hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1 mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1 protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1 toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.
近年来,“非自主运动神经元死亡”假说在肌萎缩侧索硬化症(ALS)中得到了更深入的研究。该假说认为,除运动神经元外,其他细胞也参与了病理过程。事实上,自主神经系统的参与是至关重要的,因为患者会因无法代偿心肺骤停而突然死亡。线粒体被认为在 ALS 的病理生理学中起着根本性的作用,因为它们在多种不同细胞类型的 ALS 模型中受到损害,而且在其他神经退行性疾病中也会发生这种情况。我们的研究旨在从结构、生物能量和功能角度揭示 ALS 小鼠模型交感肾上腺系统中的线粒体改变,在疾病发生的过程中。我们研究了突变 SOD1 小鼠在出现症状前和出现症状时的肾上腺嗜铬细胞。突变型 SOD1 蛋白的线粒体积累和光感受器萎缩蛋白-1(OPA1)的下调导致临床症状出现前线粒体超微结构发生改变。这些变化影响线粒体融合动力学,引发线粒体成熟受损和嵴肿胀,嵴连接点增大。功能后果是线粒体膜电位丧失和生物能量谱变化,线粒体最大呼吸和备用呼吸能力降低,以及活性氧的产生增加。这项研究确定了线粒体动力学调节剂 OPA1 是 ALS 的一个有趣的治疗靶点。此外,我们在出现症状前阶段的肾上腺髓质中发现的结果强调了交感神经损伤在这种疾病中的重要性。具体来说,我们展示了新的 SOD1 毒性途径,这些途径影响非运动神经元的细胞能量代谢,为特定细胞代谢表型与 ALS 进展之间提供了可能的联系。