Ochs Kerstin, Zeller Amandus, Saleh Lanja, Bassili Gergis, Song Yutong, Sonntag Anja, Niepmann Michael
Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-Universität Giessen, Germany.
J Virol. 2003 Jan;77(1):115-22. doi: 10.1128/jvi.77.1.115-122.2003.
In the oral poliovirus vaccine, three attenuated virus strains generated by Albert Sabin are used. However, insufficient genetic stability of these strains causes major problems in poliovirus eradication. In infected cells, translation of the plus-strand poliovirus RNA genome is directed by the internal ribosome entry site (IRES), a cis-acting RNA element that facilitates the cap-independent binding of ribosomes to an internal site of the viral RNA. In each Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence attenuation. Here we report how these decisive mutations in the IRES confer a reduction in poliovirus translation efficiency. These single-nucleotide exchanges impair the interaction of the standard translation initiation factor eIF4G with the IRES domain V. Moreover, binding of eIF4B and the polypyrimidine tract-binding protein and the association of ribosomes with the viral RNA are affected by these mutations. However, the negative effects of the IRES mutations are completely relieved by addition of purified eIF4F. This indicates that eIF4G is the crucial factor that initially binds to the poliovirus IRES and recruits the IRES to the other components of the translational apparatus, while impaired binding of eIF4G plays a key role in attenuation of poliovirus neurovirulence.
口服脊髓灰质炎病毒疫苗使用的是由阿尔伯特·萨宾培育的三种减毒病毒株。然而,这些毒株的遗传稳定性不足在脊髓灰质炎病毒根除过程中引发了重大问题。在受感染的细胞中,脊髓灰质炎病毒正链RNA基因组的翻译由内部核糖体进入位点(IRES)引导,IRES是一种顺式作用RNA元件,可促进核糖体与病毒RNA内部位点的帽依赖性结合。在每种萨宾疫苗株中,IRES二级结构域V中的单个点突变是神经毒力减弱的主要决定因素。在此,我们报告了IRES中的这些决定性突变如何导致脊髓灰质炎病毒翻译效率降低。这些单核苷酸交换损害了标准翻译起始因子eIF4G与IRES结构域V的相互作用。此外,eIF4B和多嘧啶序列结合蛋白的结合以及核糖体与病毒RNA的结合也受到这些突变的影响。然而,通过添加纯化的eIF4F,IRES突变的负面影响完全得到缓解。这表明eIF4G是最初与脊髓灰质炎病毒IRES结合并将IRES招募到翻译装置其他组件的关键因素,而eIF4G结合受损在脊髓灰质炎病毒神经毒力减弱中起关键作用。