Li Yiming, Syvitski Ray T, Chu Grace C, Ikeda-Saito Masao, Mar Gerd N La
Department of Chemistry, University of California, Davis, California 95616, USA.
J Biol Chem. 2003 Feb 28;278(9):6651-63. doi: 10.1074/jbc.M211249200. Epub 2002 Dec 11.
The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO.
利用人血红素加氧酶(hHO)复合物作为同源模型,通过¹H NMR光谱研究了来自致病性白喉棒状杆菌的血红素加氧酶(HO)HmuO活性位点环境的分子结构和动力学性质。结果表明,不仅残基之间以及残基与血红素之间的空间接触,而且与FeCN单元空间倾斜的方向和大小相关的磁轴在这两种HO复合物中都高度保守。结果表明,几个中位位置的空间位阻和进攻配体的空间倾斜具有非常相似的作用。在HmuO中发现了一个涉及大量非常强的氢键和固定水分子的远端氢键网络,这与之前在hHO中发现的类似(Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018 - 33031)。NMR结果与HmuO - 底物复合物的最新晶体结构完全一致。提出氢键网络/有序水分子可使远端水分子靠近催化关键的Asp(136)(hHO中的Asp(140)),从而稳定氢过氧中间体。HmuO中这种氢键网络的动态稳定性明显高于hHO,这可能是细菌HO与哺乳动物HO相比催化速率较慢的原因。