Harper April D, Bar-Peled Maor
Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602-4712, USA.
Plant Physiol. 2002 Dec;130(4):2188-98. doi: 10.1104/pp.009654.
UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.
UDP-木糖(Xyl)是动物、植物、真菌和细菌中糖蛋白、多糖、各种代谢产物及寡糖合成的重要糖供体。UDP-木糖还能反馈抑制上游酶(UDP-葡萄糖[Glc]脱氢酶、UDP-葡萄糖焦磷酸化酶和UDP-葡萄糖醛酸脱羧酶),并参与自身合成以及UDP-阿拉伯糖的合成。在植物中,UDP-木糖的生物合成由不同的膜结合型和可溶性UDP-葡萄糖醛酸脱羧酶(UDP-葡萄糖醛酸-DC)同工酶催化,这些同工酶都能将UDP-葡萄糖醛酸转化为UDP-木糖。由于UDP-木糖的合成发生在细胞质溶胶和膜中,目前尚不清楚不同的高尔基体定位木糖基转移酶利用的是哪种来源的UDP-木糖。在此,我们描述了几个不同的拟南芥基因(命名为AtUXS,即UDP-木糖合酶)的鉴定,这些基因编码功能性UDP-葡萄糖醛酸-DC同工型。拟南芥基因组包含五个UXS基因,其蛋白质产物可分为三类同工酶(A - C),一类是可溶性的,两类是不同的假定膜结合型。来自每一类的AtUxs基因在大肠杆菌中表达时,都会产生将UDP-葡萄糖醛酸转化为UDP-木糖的活性UDP-葡萄糖醛酸-DC。该基因家族的成员具有一个大的保守C端催化结构域(约300个氨基酸长)和一个N端可变结构域,其序列和大小不同(30 - 120个氨基酸长)。A类和B类同工型似乎编码假定的II型膜蛋白,其催化结构域面向内腔(如高尔基体糖基转移酶),N端可变结构域面向细胞质溶胶。C类Uxs可能是一种细胞质同工型。植物Uxs的特性支持这样一种假说:特定的木糖基化事件需要具有不同亚细胞定位的独特UDP-葡萄糖醛酸-DC。