Suppr超能文献

亮氨酰-tRNA合成酶的一个插入区域在I类内含子剪接中起关键作用。

An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing.

作者信息

Rho Seung Bae, Lincecum Tommie L, Martinis Susan A

机构信息

Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.

出版信息

EMBO J. 2002 Dec 16;21(24):6874-81. doi: 10.1093/emboj/cdf671.

Abstract

Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.

摘要

酵母线粒体亮氨酰 - tRNA合成酶(LeuRS)与bI4内含子结合,并与bI4成熟酶协作,以协助I类内含子的切除。缺失分析确定插入的LeuRS CP1结构域是该蛋白质剪接活性的关键因素。仅由LeuRS CP1区域组成的蛋白质片段挽救了表达剪接缺陷型LeuRS的酵母菌株的互补作用。三杂交分析确定这些含CP1的LeuRS片段,长度从214至375个氨基酸,与bI4内含子结合。在每种情况下,仅与LeuRS蛋白质片段的相互作用特异性刺激bI4内含子剪接活性。用异亮氨酰 - tRNA合成酶的同源CP1结构域进行替换或最小蛋白质片段的LeuRS CP1区域内的突变消除了RNA结合和剪接活性。CP1结构域以其氨基酸编辑活性而闻名。然而,这些结果表明,LeuRS CP1结构域内的元件在结合bI4 I类内含子并促进其自我剪接活性方面也发挥了独立于全长tRNA合成酶的新作用。

相似文献

1
3
Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles.
J Biol Chem. 2006 Aug 11;281(32):23075-82. doi: 10.1074/jbc.M601606200. Epub 2006 Jun 14.
4
Leucyl-tRNA synthetase-dependent and -independent activation of a group I intron.
J Biol Chem. 2009 Sep 25;284(39):26243-50. doi: 10.1074/jbc.M109.031179. Epub 2009 Jul 21.
7
Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase.
J Mol Biol. 2007 Mar 23;367(2):384-94. doi: 10.1016/j.jmb.2006.12.051. Epub 2006 Dec 23.
8
A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
J Mol Biol. 2008 Feb 15;376(2):482-91. doi: 10.1016/j.jmb.2007.11.065. Epub 2007 Nov 28.
9
A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
Biochemistry. 2009 Feb 17;48(6):1340-7. doi: 10.1021/bi801832j.

引用本文的文献

1
Compendium of Methods to Uncover RNA-Protein Interactions In Vivo.
Methods Protoc. 2021 Mar 19;4(1):22. doi: 10.3390/mps4010022.
3
tRNA synthetase: tRNA aminoacylation and beyond.
Wiley Interdiscip Rev RNA. 2014 Jul-Aug;5(4):461-80. doi: 10.1002/wrna.1224. Epub 2014 Apr 4.
4
Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations.
EMBO Mol Med. 2014 Feb;6(2):183-93. doi: 10.1002/emmm.201303202. Epub 2014 Jan 10.
5
Emergence and evolution.
Top Curr Chem. 2014;344:43-87. doi: 10.1007/128_2013_423.
7
Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.
Nat Struct Mol Biol. 2010 Jan;17(1):57-61. doi: 10.1038/nsmb.1706. Epub 2009 Dec 13.
8
Leucyl-tRNA synthetase-dependent and -independent activation of a group I intron.
J Biol Chem. 2009 Sep 25;284(39):26243-50. doi: 10.1074/jbc.M109.031179. Epub 2009 Jul 21.
9
Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase.
J Biol Chem. 2009 Apr 10;284(15):10088-99. doi: 10.1074/jbc.M807361200. Epub 2009 Feb 2.
10
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19223-8. doi: 10.1073/pnas.0809336105. Epub 2008 Nov 19.

本文引用的文献

1
Formation of two classes of tRNA synthetases in relation to editing functions and genetic code.
Cold Spring Harb Symp Quant Biol. 2001;66:161-6. doi: 10.1101/sqb.2001.66.161.
2
Rational design to block amino acid editing of a tRNA synthetase.
J Am Chem Soc. 2002 Jun 26;124(25):7286-7. doi: 10.1021/ja025879s.
4
tRNA-like recognition of group I introns by a tyrosyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2630-5. doi: 10.1073/pnas.052596299. Epub 2002 Feb 19.
8
A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria.
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13743-8. doi: 10.1073/pnas.240465597.
9
Yeast three-hybrid system to detect and analyze RNA-protein interactions.
Methods Enzymol. 2000;318:399-419. doi: 10.1016/s0076-6879(00)18066-8.
10
Errors from selective disruption of the editing center in a tRNA synthetase.
Biochemistry. 2000 Jul 18;39(28):8180-6. doi: 10.1021/bi0004798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验