Suppr超能文献

含ClpP蛋白酶在大肠杆菌稳定期适应中的全局作用。

Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli.

作者信息

Weichart Dieter, Querfurth Nadine, Dreger Mathias, Hengge-Aronis Regine

机构信息

Institut für Biologie-Mikrobiologie, Freie Universitaet Berlin, Königin-Luise Strasse 12-16, 14195 Berlin, Germany.

出版信息

J Bacteriol. 2003 Jan;185(1):115-25. doi: 10.1128/JB.185.1.115-125.2003.

Abstract

To elucidate the involvement of proteolysis in the regulation of stationary-phase adaptation, the clpA, clpX, and clpP protease mutants of Escherichia coli were subjected to proteome analysis during growth and during carbon starvation. For most of the growth-phase-regulated proteins detected on our gels, the clpA, clpX, or clpP mutant failed to mount the growth-phase regulation found in the wild type. For example, in the clpP and clpA mutant cultures, the Dps protein, the WrbA protein, and the periplasmic lysine-arginine-ornithine binding protein ArgT did not display the induction typical for late-stationary-phase wild-type cells. On the other hand, in the protease mutants, a number of proteins accumulated to a higher degree than in the wild type, especially in late stationary phase. The proteins affected in this manner include the LeuA, TrxB, GdhA, GlnA, and MetK proteins and alkyl hydroperoxide reductase (AhpC). These proteins may be directly degraded by ClpAP or ClpXP, respectively, or their expression could be modulated by a protease-dependent mechanism. From our data we conclude that the levels of most major growth-phase-regulated proteins in E. coli are at some point controlled by the activity of at least one of the ClpP, ClpA, and ClpX proteins. Cultures of the strains lacking functional ClpP or ClpX also displayed a more rapid loss of viability during extended stationary phase than the wild type. Therefore, regulation by proteolysis seems to be more important, especially in resting cells, than previously suspected.

摘要

为阐明蛋白水解作用在稳定期适应性调节中的参与情况,对大肠杆菌的clpA、clpX和clpP蛋白酶突变体在生长过程和碳饥饿期间进行了蛋白质组分析。对于在我们的凝胶上检测到的大多数生长阶段调节蛋白,clpA、clpX或clpP突变体未能呈现出野生型中发现的生长阶段调节。例如,在clpP和clpA突变体培养物中,Dps蛋白、WrbA蛋白和周质赖氨酸 - 精氨酸 - 鸟氨酸结合蛋白ArgT未表现出晚期稳定期野生型细胞典型的诱导现象。另一方面,在蛋白酶突变体中,一些蛋白质积累的程度高于野生型,尤其是在稳定期末期。以这种方式受到影响的蛋白质包括LeuA、TrxB、GdhA、GlnA和MetK蛋白以及烷基过氧化氢还原酶(AhpC)。这些蛋白质可能分别被ClpAP或ClpXP直接降解,或者它们的表达可能通过蛋白酶依赖性机制进行调节。根据我们的数据,我们得出结论,大肠杆菌中大多数主要生长阶段调节蛋白的水平在某个时间点受到ClpP、ClpA和ClpX蛋白中至少一种的活性控制。缺乏功能性ClpP或ClpX的菌株培养物在延长的稳定期内也比野生型表现出更快的活力丧失。因此,蛋白水解调节似乎比以前认为的更重要,尤其是在静止细胞中。

相似文献

1
Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli.
J Bacteriol. 2003 Jan;185(1):115-25. doi: 10.1128/JB.185.1.115-125.2003.
2
Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
Mol Microbiol. 2003 Sep;49(6):1605-14. doi: 10.1046/j.1365-2958.2003.03644.x.
3
Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease.
J Bacteriol. 1996 Jan;178(2):470-6. doi: 10.1128/jb.178.2.470-476.1996.
4
Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
J Biol Chem. 2001 Aug 3;276(31):29420-9. doi: 10.1074/jbc.M103489200. Epub 2001 May 9.
5
Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
J Bacteriol. 1999 May;181(10):3039-50. doi: 10.1128/JB.181.10.3039-3050.1999.
7
Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
J Biol Chem. 1998 May 15;273(20):12476-81. doi: 10.1074/jbc.273.20.12476.
8
Expression of different-size transcripts from the clpP-clpX operon of Escherichia coli during carbon deprivation.
J Bacteriol. 2000 Dec;182(23):6630-7. doi: 10.1128/JB.182.23.6630-6637.2000.
10
The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica.
Mol Microbiol. 1997 Oct;26(1):99-107. doi: 10.1046/j.1365-2958.1997.5551916.x.

引用本文的文献

1
The protein interactome of Escherichia coli carbohydrate metabolism.
PLoS One. 2025 Feb 4;20(2):e0315240. doi: 10.1371/journal.pone.0315240. eCollection 2025.
2
Protein overabundance is driven by growth robustness.
ArXiv. 2024 Aug 21:arXiv:2408.11952v1.
3
Protein overabundance is driven by growth robustness.
bioRxiv. 2024 Aug 17:2024.08.14.607847. doi: 10.1101/2024.08.14.607847.
4
Serving Two Masters: Effect of Dual Resistance on Antibiotic Susceptibility.
Antibiotics (Basel). 2023 Mar 17;12(3):603. doi: 10.3390/antibiotics12030603.
5
Cellular Self-Digestion and Persistence in Bacteria.
Microorganisms. 2021 Oct 31;9(11):2269. doi: 10.3390/microorganisms9112269.
6
Starvation induces shrinkage of the bacterial cytoplasm.
Proc Natl Acad Sci U S A. 2021 Jun 15;118(24). doi: 10.1073/pnas.2104686118.
7
How Rhizobia Adapt to the Nodule Environment.
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.
8
Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
J Biol Chem. 2021 Jan-Jun;296:100162. doi: 10.1074/jbc.RA120.013866. Epub 2020 Dec 10.
10
Identifying Metabolic Inhibitors to Reduce Bacterial Persistence.
Front Microbiol. 2020 Mar 27;11:472. doi: 10.3389/fmicb.2020.00472. eCollection 2020.

本文引用的文献

2
ClpS, a substrate modulator of the ClpAP machine.
Mol Cell. 2002 Mar;9(3):673-83. doi: 10.1016/s1097-2765(02)00485-9.
3
Protein aggregation in Escherichia coli: role of proteases.
FEMS Microbiol Lett. 2002 Jan 22;207(1):9-12. doi: 10.1111/j.1574-6968.2002.tb11020.x.
4
Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability.
Arch Biochem Biophys. 2002 Jan 15;397(2):206-16. doi: 10.1006/abbi.2001.2703.
8
The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
Genes Dev. 2001 Mar 1;15(5):627-37. doi: 10.1101/gad.864401.
10
A specificity-enhancing factor for the ClpXP degradation machine.
Science. 2000 Sep 29;289(5488):2354-6. doi: 10.1126/science.289.5488.2354.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验