Suppr超能文献

扩散张量成像在缺血性脑损伤评估中的作用——综述

The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review.

作者信息

Sotak Christopher H

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Mass 01609, USA.

出版信息

NMR Biomed. 2002 Nov-Dec;15(7-8):561-9. doi: 10.1002/nbm.786.

Abstract

Water diffusion in brain tissue is affected by the presence of barriers to translational motion such as cell membranes and myelin fibers. The measured water apparent diffusion coefficient (ADC) value is therefore frequently anisotropic and varies depending upon the orientation of restricting barriers (such as white matter tracts) relative to the diffusion-sensitive-gradient direction. Anisotropic water diffusion can be specified using indices of diffusion anisotropy [e.g. standard deviation of the individual ADC values, fractional anisotropy (FA), lattice index (LI)], which are derived from measurements of the full diffusion tensor. The rotationally invariant nature of particular diffusion anisotropy indices (e.g. FA, LI) allows orientation-independent comparisons of these parameters between different subjects. Pathophysiological processes (such as cerebral ischemia) that modify the integrity of the tissue microstructure result in significant alterations in tissue anisotropy and make this metric a useful endpoint for characterizing the temporal evolution of the disease. Diffusion-tensor imaging (DTI) studies of both experimental and human stroke suggest that DTI may provide additional information about the evolution of the disease that is not available from diffusion-weighted MRI (DWI) alone. Acute reductions in the average diffusivity [ = (lambda(1) + lambda(2) + lambda(3))/3 where lambda(1), lambda(2), and lambda(3) are the eigenvalues of the diffusion tensor] following the onset of cerebral ischemia are often accompanied by increases in diffusion anisotropy. In the transition from acute to sub-acute and chronic stroke, renormalizes and subsequently increases whereas diffusion anisotropy measures (e.g. FA) decline and remained reduced in chronic infarcts. Overall isotropic ADC changes during infarct evolution have been observed to be greater in white matter (WM) than in gray matter (GM) lesions (although there have been conflicting reports on this issue) and GM lesions tend to renormalize prior to WM lesions as the infarct evolves. Ischemic WM exhibits a significant decrease in diffusion anisotropy (relative to normal WM) during ischemic evolution whereas that of ischemic GM remains statistically unchanged. Furthermore, the percentage decrease in ischemic WM is largely determined by reductions in lambda(1), the eigenvalue that coincides with the long axis of the WM fiber tract. Variations in unidirectional ADC or over the ischemic time course limit the usefulness of this parameter alone as a predictor of ischemic injury. Consequently, ADC information has been combined with that of other MR parameters (including DTI) to unambiguously stage and predict ischemic brain injury over its entire temporal evolution. Combined and diffusion anisotropy measurements have identified three phases of diffusion abnormality: (1) reduced and elevated anisotropy; (2) reduced and reduced anisotropy; and (3) elevated and reduced anisotropy. However, variations in the differential patterns of and diffusion anisotropy evolution have been observed by a number of investigators and more work is needed to clarify the role of these measurements in characterizing the severity of the ischemic insult as well as the potential outcome in response to the initial ischemic injury. The use of DTI, in combination with more sophisticated analysis methods for performing multiparametric segmentation, such as multispectral analysis, may enhance the use of MRI for accurate diagnosis and prognosis of stroke. Furthermore, these techniques may also play an important role in the clinical evaluation of new stroke treatments.

摘要

脑组织中的水扩散受平移运动障碍(如细胞膜和髓鞘纤维)的影响。因此,测得的水表观扩散系数(ADC)值通常是各向异性的,并且会根据限制屏障(如白质束)相对于扩散敏感梯度方向的取向而变化。各向异性水扩散可以使用扩散各向异性指数来指定[例如,单个ADC值的标准差、分数各向异性(FA)、晶格指数(LI)],这些指数是从完整扩散张量的测量中得出的。特定扩散各向异性指数(如FA、LI)的旋转不变性使得可以在不同受试者之间对这些参数进行与取向无关的比较。改变组织微观结构完整性的病理生理过程(如脑缺血)会导致组织各向异性发生显著变化,并使该指标成为表征疾病时间演变的有用终点。对实验性和人类中风的扩散张量成像(DTI)研究表明,DTI可能提供有关疾病演变的额外信息,而这些信息仅从扩散加权磁共振成像(DWI)中无法获得。脑缺血发作后,平均扩散率[ =(λ1 + λ2 + λ3)/3,其中λ1、λ2和λ3是扩散张量的特征值]的急性降低通常伴随着扩散各向异性的增加。在从急性中风向亚急性和慢性中风的转变过程中,重新归一化并随后增加,而扩散各向异性测量值(如FA)下降并在慢性梗死灶中持续降低。在梗死演变过程中,已观察到白质(WM)病变的总体各向同性ADC变化比灰质(GM)病变更大(尽管关于这个问题存在相互矛盾的报道),并且随着梗死的演变,GM病变往往比WM病变更早重新归一化。缺血性WM在缺血演变过程中扩散各向异性显著降低(相对于正常WM),而缺血性GM的扩散各向异性在统计学上保持不变。此外,缺血性WM中的降低百分比在很大程度上取决于与WM纤维束长轴一致的特征值λ1的降低。在缺血时间进程中单向ADC或的变化限制了该参数单独作为缺血性损伤预测指标的实用性。因此,ADC信息已与其他磁共振参数(包括DTI)的信息相结合,以明确分期并预测缺血性脑损伤在其整个时间演变过程中的情况。结合和扩散各向异性测量已确定了扩散异常的三个阶段:(1)降低和各向异性升高;(2)降低和各向异性降低;(3)升高和各向异性降低。然而,许多研究人员观察到和扩散各向异性演变的差异模式存在变化,需要更多的工作来阐明这些测量在表征缺血性损伤的严重程度以及对初始缺血性损伤的潜在反应结果方面的作用。使用DTI,并结合更复杂的多参数分割分析方法,如多光谱分析,可能会增强MRI在中风准确诊断和预后评估中的应用。此外,这些技术在新中风治疗的临床评估中也可能发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验