Steiner Thomas
Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, Germany.
Angew Chem Int Ed Engl. 2002 Jan 4;41(1):49-76. doi: 10.1002/1521-3773(20020104)41:1<48::aid-anie48>3.0.co;2-u.
The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.
氢键是所有具有方向性的分子间相互作用中最重要的一种。它在决定分子构象、分子聚集以及从无机到生物等众多化学体系的功能方面都发挥着作用。对氢键的研究在20世纪80年代经历了一段停滞期,但在1990年左右重新开启,此后一直在快速发展。按照现代概念,氢键被理解为一种非常广泛的现象,并且人们公认它与其他效应之间存在着开放的边界。在凝聚相中普遍存在着几十种不同类型的X-H…A氢键,此外还有无数不太常见的氢键。其解离能跨越两个多数量级(约0.2 - 40千卡·摩尔⁻¹)。在此范围内,相互作用的性质并非一成不变,而是其静电、共价和色散贡献的相对权重会有所不同。氢键具有宽泛的过渡区域,它与共价键、范德华相互作用、离子相互作用以及阳离子-π相互作用都能连续融合。所有氢键都可被视为初始的质子转移反应,对于强氢键而言,此反应可能处于非常高级的状态。在这篇综述中,对所有这些问题进行了连贯的概述。