Yıldız Tevhide Ayça, Deneme İbrahim, Usta Hakan
Department of Materials Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri 38080, Turkey.
ACS Appl Mater Interfaces. 2025 Sep 3;17(35):49720-49736. doi: 10.1021/acsami.5c12618. Epub 2025 Aug 22.
Novel structural engineering strategies for solubilizing high-mobility semiconductors are critical, which enables green solvent processing for eco-friendly, sustainable device fabrication, and unique molecular properties. Here, we introduce a viable asymmetric functionalization approach, synthesizing monocarbonyl [1]benzothieno[3,2-][1]benzothiophene molecules on a gram scale in two transition-metal-free steps. An unprecedented solubility of up to 176.0 mg·mL (at room temperature) is achieved, which is the highest reported to date for a high-performance organic semiconductor. The single-crystal structural analysis reveals a herringbone motif with multiple edge-to-face interactions and nonclassical hydrogen bonds involving the carbonyl unit. The asymmetric backbones adopt an antiparallel arrangement, enabling face-to-face π-π interactions. The mono(alkyl-aryl)carbonyl-BTBT compound, enables formulations in varied green solvents, including acetone and ethanol, all achieving -channel top-contact/bottom-gate OFETs in ambient conditions. Charge carrier mobilities of up to 1.87 cm/V·s (μ ≈ 0.4 cm/V·s; I/I ≈ 10-10) were achieved. To the best of our knowledge, this is one of the highest OFET performances achieved using a green solvent. Hansen solubility parameters (HSP) analysis, combined with Scatchard-Hildebrand regular solution theory and single-crystal packing analysis, elucidates this exceptional solubility and reveals unique relationships between molecular structure, interaction energy densities, cohesive energetics, and solute-solvent distances (). An optimal solute-green solvent interaction distance in HSP space proves critical for green solvent-processed thin-film properties. This asymmetric functionalization approach, with demonstrated unique solubility insights, provides a foundation for designing green solvent-processable π-conjugated systems, potentially advancing innovation in sustainable (opto)electronics and bioelectronics.
用于溶解高迁移率半导体的新型结构工程策略至关重要,这使得绿色溶剂加工能够用于环保、可持续的器件制造以及独特的分子特性。在此,我们介绍一种可行的不对称功能化方法,通过两个无过渡金属步骤以克级规模合成单羰基[1]苯并噻吩并[3,2 - ][1]苯并噻吩分子。实现了高达176.0 mg·mL(室温下)的前所未有的溶解度,这是迄今为止高性能有机半导体报道的最高值。单晶结构分析揭示了一种具有多个边对面相互作用和涉及羰基单元的非经典氢键的人字形图案。不对称主链采用反平行排列,实现面对面的π - π相互作用。单(烷基 - 芳基)羰基 - BTBT化合物能够在包括丙酮和乙醇在内的多种绿色溶剂中进行配方,在环境条件下均能实现 - 沟道顶接触/底栅有机场效应晶体管。实现了高达1.87 cm²/V·s(μ ≈ 0.4 cm²/V·s;I/I ≈ 10⁻¹⁰)的电荷载流子迁移率。据我们所知,这是使用绿色溶剂实现的最高有机场效应晶体管性能之一。汉森溶解度参数(HSP)分析,结合斯卡查德 - 希尔德布兰德正则溶液理论和单晶堆积分析,阐明了这种特殊的溶解度,并揭示了分子结构、相互作用能密度、内聚能学和溶质 - 溶剂距离()之间的独特关系。HSP空间中最佳的溶质 - 绿色溶剂相互作用距离被证明对绿色溶剂处理的薄膜性能至关重要。这种具有独特溶解度见解的不对称功能化方法为设计绿色溶剂可加工的π共轭体系提供了基础,有可能推动可持续(光)电子学和生物电子学的创新。