Lad Latesh, Schuller David J, Shimizu Hideaki, Friedman Jonathan, Li Huiying, Ortiz de Montellano Paul R, Poulos Thomas L
Department of Molecular Biology and Biochemistry, Program in Macromolecular Structure, University of California, Irvine 92697, USA.
J Biol Chem. 2003 Mar 7;278(10):7834-43. doi: 10.1074/jbc.M211450200. Epub 2002 Dec 24.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin. The crystal structure of human HO-1 in complex with heme reveals a novel helical structure with conserved glycines in the distal helix, providing flexibility to accommodate substrate binding and product release (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). To structurally understand the HO catalytic pathway in more detail, we have determined the crystal structure of human apo-HO-1 at 2.1 A and a higher resolution structure of human HO-1 in complex with heme at 1.5 A. Although the 1.5-A heme.HO-1 model confirms our initial analysis based on the 2.08-A model, the higher resolution structure has revealed important new details such as a solvent H-bonded network in the active site that may be important for catalysis. Because of the absence of the heme, the distal and proximal helices that bracket the heme plane in the holo structure move farther apart in the apo structure, thus increasing the size of the active-site pocket. Nevertheless, the relative positioning and conformation of critical catalytic residues remain unchanged in the apo structure compared with the holo structure, but an important solvent H-bonded network is missing in the apoenzyme. It thus appears that the binding of heme and a tightening of the structure around the heme stabilize the solvent H-bonded network required for proper catalysis.
血红素加氧酶(HO)催化血红素降解为胆绿素。人HO-1与血红素复合物的晶体结构揭示了一种新型螺旋结构,其远端螺旋中有保守的甘氨酸,为容纳底物结合和产物释放提供了灵活性(舒勒,D.J.,威尔克斯,A.,奥尔蒂斯·德·蒙特利亚诺,P.R.,和普洛斯,T.L.(1999年)《自然结构生物学》6,860 - 867)。为了更详细地从结构上理解HO催化途径,我们测定了人脱辅基HO-1在2.1埃分辨率下的晶体结构以及人HO-1与血红素复合物在1.5埃更高分辨率下的结构。尽管1.5埃的血红素-HO-1模型证实了我们基于2.08埃模型的初步分析,但更高分辨率的结构揭示了重要的新细节,例如活性位点中可能对催化很重要的溶剂氢键网络。由于没有血红素,在全酶结构中包围血红素平面的远端和近端螺旋在脱辅基结构中相距更远,从而增加了活性位点口袋的大小。然而,与全酶结构相比,脱辅基结构中关键催化残基的相对位置和构象保持不变,但脱辅基酶中缺少一个重要的溶剂氢键网络。因此,似乎血红素的结合以及血红素周围结构的收紧稳定了适当催化所需的溶剂氢键网络。