Suppr超能文献

高等植物血红素加氧酶-1 的晶体结构及其与铁氧还蛋白相互作用的机制。

Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin.

机构信息

Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan.

Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100217. doi: 10.1074/jbc.RA120.016271. Epub 2020 Dec 24.

Abstract

Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.

摘要

血红素加氧酶(HO)将血红素转化为一氧化碳、胆绿素和游离铁,这些产物是细胞氧化还原信号和铁循环的必需物质。在高等植物中,HO 还参与光受体色素前体的生物合成。尽管有许多常见的酶促反应,但植物型 HO 与其他 HO 的氨基酸序列同一性异常低(约 19.5%),并且在哺乳动物 HO 中催化重要的氨基酸在植物型 HO 中没有保守。植物型 HO 的结构特征仅限于电子自旋共振的光谱特征,目前尚不清楚植物型 HO 的结构如何与其他 HO 不同。在这里,我们解决了 Glycine max(大豆)HO-1(GmHO-1)的晶体结构,分辨率为 1.06 Å,并进行了其与铁氧还蛋白(植物特异性电子供体)相互作用的等温滴定微量热法测量和 NMR 光谱研究。GmHO-1 的高分辨率 X 射线结构揭示了几个新的结构成分:一个额外的不规则结构区域、一个从活性位点到表面的新的水隧道以及一个植物型 HO 特有的氢键网络。其他 HO 中结构重要的特征,如 His 与结合的血红素的配位,在 GmHO-1 中得到了保留。基于 X 射线晶体学、等温滴定微量热法和 NMR 测量的综合数据,我们提出了植物型 HO 的进化微调,以适应类囊体膜基质侧动态 pH 变化,而在波动的光条件下不会失去酶活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a30/7948506/961081bd41f1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验