Suppr超能文献

Optimizing chemotherapy by measuring reversal of P-glycoprotein activity in plasma membrane vesicles.

作者信息

Köhler Sabine, Stein Wilfred D

机构信息

Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Biotechnol Bioeng. 2003 Mar 5;81(5):507-17. doi: 10.1002/bit.10488.

Abstract

The appearance of multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Several proteins have been identified that pump chemotherapeutic drugs out of cells, thus bringing about MDR. One representative pump is the P-glycoprotein, whose function can be inhibited by blockers (also known as reversers, modulators or chemosensitizers). In clinical application, many of these blockers are often not effective because they become bound to the plasma of the patients. The extent of plasma binding of the blocker varies in different persons and we have developed a 96-well kit to assay such inter-person differences. The assay uses membrane vesicles isolated from a human lymphoblastoid cell line (CEM Col1000). Uptake of rhodamine into the vesicles was measured with different concentrations of the blockers verapamil and XR9576 in presence of human plasma. The reverser XR9576 is nearly 30 times more effective than the classical blocker verapamil, the relevant K(m) values ranging from 2.66 to 45 nM for XR 9576 and 0.7 to 5.5 microM for verapamil. An even greater difference between these two drugs, nearly 1,000-fold, could be shown also in intact cells by calcein AM uptake experiments.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验