Kennaway David J, Voultsios Athena, Varcoe Tamara J, Moyer Robert W
Department of Obstetrics and Gynaecology, University of Adelaide Medical School, Adelaide, South Australia 5005, Australia.
Am J Physiol Regul Integr Comp Physiol. 2003 May;284(5):R1231-40. doi: 10.1152/ajpregu.00697.2002. Epub 2003 Jan 9.
Melatonin and wheel-running rhythmicity and the effects of acute and chronic light pulses on these rhythms were studied in Clock(Delta19) mutant mice selectively bred to synthesize melatonin. Homozygous melatonin-proficient Clock(Delta19) mutant mice (Clock(Delta19/Delta19)-MEL) produced melatonin rhythmically, with peak production 2 h later than the wild-type controls (i.e., just before lights on). By contrast, the time of onset of wheel-running activity occurred within a 20-min period around lights off, irrespective of the genotype. Melatonin production in the mutants spontaneously decreased within 1 h of the expected time of lights on. On placement of the mice in continuous darkness, the melatonin rhythm persisted, and the peak occurred 2 h later in each cycle over the first two cycles, consistent with the endogenous period of the mutant. This contrasted with the onset of wheel-running activity, which did not shift for several days in constant darkness. A light pulse around the time of expected lights on followed by constant darkness reduced the expected 2-h delay of the melatonin peak of the mutants to approximately 1 h and advanced the time of the melatonin peak in the wild-type mice. When the Clock(Delta19/Delta19)-MEL mice were maintained in a skeleton photoperiod of daily 15-min light pulses, a higher proportion entrained to the schedule (57%) than melatonin-deficient mutants (9%). These results provide compelling evidence that mice with the Clock(Delta19) mutation express essentially normal rhythmicity, albeit with an underlying endogenous period of 26-27 h, and they can be entrained by brief exposure to light. They also raise important questions about the role of Clock in rhythmicity and the usefulness of monitoring behavioral rhythms compared with hormonal rhythms.
在经过选择性培育以合成褪黑素的Clock(Delta19)突变小鼠中,研究了褪黑素与转轮节律以及急性和慢性光脉冲对这些节律的影响。纯合的能产生褪黑素的Clock(Delta19)突变小鼠(Clock(Delta19/Delta19)-MEL)有节律地产生褪黑素,其分泌高峰比野生型对照晚2小时(即在光照开启前)。相比之下,无论基因型如何,转轮活动的开始时间都在光照关闭前后20分钟内。突变体中褪黑素的分泌在预期光照开启时间的1小时内自发减少。将小鼠置于持续黑暗中时,褪黑素节律持续存在,并且在前两个周期中每个周期的高峰出现时间延迟2小时,这与突变体的内源性周期一致。这与转轮活动的开始形成对比,在持续黑暗中,转轮活动的开始时间在数天内都没有变化。在预期光照开启时间左右给予一个光脉冲,随后置于持续黑暗中,这将突变体褪黑素高峰预期的2小时延迟减少到约1小时,并使野生型小鼠的褪黑素高峰时间提前。当Clock(Delta19/Delta19)-MEL小鼠维持在每天15分钟光脉冲的骨架光周期中时,与缺乏褪黑素的突变体(9%)相比,有更高比例(57%)的小鼠能被该光照时间表所诱导。这些结果提供了令人信服的证据,表明具有Clock(Delta19)突变的小鼠表现出基本正常的节律性,尽管其潜在的内源性周期为26 - 27小时,并且它们可以通过短暂暴露于光照而被诱导。它们还引发了关于Clock在节律性中的作用以及与激素节律相比监测行为节律的有用性的重要问题。