Suppr超能文献

Distribution of gephyrin in the human brain: an immunohistochemical analysis.

作者信息

Waldvogel H J, Baer K, Snell R G, During M J, Faull R L M, Rees M I

机构信息

Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.

出版信息

Neuroscience. 2003;116(1):145-56. doi: 10.1016/s0306-4522(02)00550-x.

Abstract

Gephyrin is an ubiquitously expressed protein that, in the central nervous system, generates a protein scaffold to anchor inhibitory neurotransmitter receptors in the postsynaptic membrane. It was first identified as a protein component of the glycine receptor complex. Recent studies have demonstrated that gephyrin is colocalized with several subtypes of GABA(A) receptors and is part of postsynaptic GABA(A) receptor clusters. Here, we describe a study of the regional and cellular distribution of gephyrin in the human brain, determined by immunohistochemical localisation at the light and confocal laser scanning microscopic levels. At the regional level, gephyrin immunoreactivity was observed in most of the major brain regions examined. The most intense staining was in the cerebral cortex, hippocampus and caudate-putamen, in various brainstem nuclei with more moderate levels in the thalamus and cerebellum. At the cellular level gephyrin immunoreactivity was present on the plasma membranes of the soma and dendrites of pyramidal neurons throughout the various cortical regions examined. In the hippocampus, intense staining was observed on the granule cells of the dentate gyrus, and neurons of the CA1 and CA3 regions showed intense punctate gephyrin staining on their apical dendrites and cell bodies. Gephyrin immunoreactivity was also observed on neurons in the thalamus, globus pallidus and substantia nigra. In the putamen intense labelling of the striosomes was observed; most of the medium-sized neurons in the caudate-putamen were weakly labelled and many large neurons of the striatum were conspicuously stained. Many of the brainstem nuclei, notably the dorsal motor nucleus of the vagus, hypoglossal nucleus, trigeminal nucleus and inferior olive were all labelled with gephyrin. The spinal cord also showed high levels of gephyrin immunoreactivity. Our results demonstrate that the anchoring protein gephyrin is ubiquitously present in the human brain. We therefore suggest that gephyrin may have a central organizer role in assembling and stabilizing inhibitory postsynaptic membranes in human brain and is similar in function to those observed in the rodent brain. These findings contribute towards elucidating the role of gephyrin in the human brain.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验