Suppr超能文献

[基于径向基函数神经网络的重叠色谱峰解析]

[Resolution of overlapping chromatographic peaks by radial basis function neural network].

作者信息

Li Y B, Huang X Y, Sha M, Meng X S

机构信息

Shenyang Institute of Aeronautical Engineering, Shenyang 110034, China.

出版信息

Se Pu. 2001 Mar;19(2):112-5.

Abstract

A new algorithm-resolution of overlapping chromatographic peaks by radial basis function neural network(RBFNN) is presented. A two-phase genetic algorithm(GA) which has robustness and random globe optimization is used to train RBFNN so that it has the ability on the resolution of overlapping chromatographic peaks. The two-phase genetic algorithm involves two procedures: training structure and optimizing parameter. The first procedure uses GA to train the architectures of RBFNN, the second procedure uses gradient descent to train the center(tR) and the width(sigma) of RBFNN. The alternate use of these two procedures makes the network having the ability to learn structure, therefore makes itself adaptable to resolution of the chromatographic peaks with unknown number of components. The method proposed here needs no artificial interference, not only has it robustness and globalism, but also the ability of accurate resolution to completely overlapped chromatographic peaks. The simulation experiments show that this method is more accurate than other methods.

摘要

提出了一种基于径向基函数神经网络(RBFNN)的重叠色谱峰解析新算法。采用具有鲁棒性和全局随机优化能力的两阶段遗传算法(GA)对RBFNN进行训练,使其具备解析重叠色谱峰的能力。两阶段遗传算法包括两个过程:训练结构和优化参数。第一个过程使用GA训练RBFNN的结构,第二个过程使用梯度下降法训练RBFNN的中心(tR)和宽度(sigma)。这两个过程交替使用,使网络具有学习结构的能力,从而使其自身能够适应解析未知组分数的色谱峰。本文提出的方法无需人工干预,不仅具有鲁棒性和全局性,而且具有精确解析完全重叠色谱峰的能力。仿真实验表明,该方法比其他方法更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验