Suppr超能文献

基于遗传算法的径向基函数神经网络(RBFNN-GA)对山东经济的区域 GDP 预测分析研究。

A Study on Regional GDP Forecasting Analysis Based on Radial Basis Function Neural Network with Genetic Algorithm (RBFNN-GA) for Shandong Economy.

机构信息

School of Business and Economics, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia.

出版信息

Comput Intell Neurosci. 2022 Jan 25;2022:8235308. doi: 10.1155/2022/8235308. eCollection 2022.

Abstract

Gross domestic product (GDP) is an important indicator for determining a country's or region's economic status and development level, and it is closely linked to inflation, unemployment, and economic growth rates. These basic indicators can comprehensively and effectively reflect a country's or region's future economic development. The center of radial basis function neural network and smoothing factor to take a uniform distribution of the random radial basis function artificial neural network will be the focus of this study. This stochastic learning method is a useful addition to the existing methods for determining the center and smoothing factors of radial basis function neural networks, and it can also help the network more efficiently train. GDP forecasting is aided by the genetic algorithm radial basis neural network, which allows the government to make timely and effective macrocontrol plans based on the forecast trend of GDP in the region. This study uses the genetic algorithm radial basis, neural network model, to make judgments on the relationships contained in this sequence and compare and analyze the prediction effect and generalization ability of the model to verify the applicability of the genetic algorithm radial basis, neural network model, based on the modeling of historical data, which may contain linear and nonlinear relationships by itself, so this study uses the genetic algorithm radial basis, neural network model, to make, compare, and analyze judgments on the relationships contained in this sequence.

摘要

国内生产总值(GDP)是衡量一个国家或地区经济状况和发展水平的重要指标,它与通货膨胀、失业和经济增长率密切相关。这些基本指标可以全面有效地反映一个国家或地区的未来经济发展。本研究的重点是径向基函数神经网络的中心和平滑因子的均匀分布的随机径向基函数人工神经网络。这种随机学习方法是确定径向基函数神经网络的中心和平滑因子的现有方法的有益补充,也可以帮助网络更有效地训练。利用遗传算法径向基神经网络对 GDP 进行预测,使政府能够根据本地区 GDP 的预测趋势,及时有效地制定宏观调控计划。本研究采用遗传算法径向基神经网络模型对该序列中包含的关系进行判断,并对模型的预测效果和泛化能力进行比较和分析,验证遗传算法径向基神经网络模型的适用性。基于历史数据的建模,它本身可能包含线性和非线性关系,因此本研究采用遗传算法径向基神经网络模型对该序列中包含的关系进行判断、比较和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ef/8808226/9b1e27d892b9/CIN2022-8235308.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验