Suppr超能文献

[基于分子路径矢量的烷烃摩尔响应值预测与估算]

[Prediction and estimation on molar response values of alkanes by using molecular path vector].

作者信息

Zhou L P, Xia Z N, Liu S S, Zhang M J, Li Z L

机构信息

College of Environment and Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Se Pu. 2000 Nov;18(6):480-6.

Abstract

A new method based on a novel molecular topological index vector, called the molecular path vector (MPV), of alkane molecules is proposed and employed for estimation and prediction of the molar response values of various alkanes. The novel MPV, p = (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10)', which derived directly from the interaction terms of molecular graph, is used to characterize well molecular structures of all alkanes from one through ten or eleven carbon atoms. It showed that there exists very good correlation between the MPV elements and molar response values on both FID and TCD detectors in classical gas chromatography. Based on the given calibration set with different sample numbers and by using the practical multiple linear regression, the quantitative structure-response relationship (QSRR) equations, for the molar response values (SM) on both FID and TCD, are respectively given as follows: SM(FID) = 15.4004881 + 17.9905995 X1 - 0.1652116 X2 - 0.6974103 X3 - 0.8452390 X4 - 0.2671000 X5 - 1.5657273 X6 + 0.0944440 X7, n = 50, m = 7, r = 0.9976, ST = 26.132, SR = 1.965 1, Ev = 99.72%, RMS = 1.801, F = 1231.71 SM(TCD) = 11.9946996 + 29.1490916 X1 - 4.7451669 X2 - 3.7673385 X3 - 1.4948330 X4 - 1.6278831 X5 - 0.7934611 X6 - 3.0566093 X7, n = 32, m = 7, r = 0.9968, ST = 15.72, SR = 1.4310, Ev = 99.59%, RMS = 1.239, F = 531.227 where the independent descriptor variables, X1-X7, refer to the elements, P1, P2, P3, P4, P5, P6, P7 in the molecular path vector for all samples in both FID and TCD training sets; n, r, ST, SR, Ev, RMS and F are the sample number, regression coefficient, total standard deviation, standard residual deviation, explained variance, rooted mean squared error and F-statistic value, respectively. To test both models by using back-propagation neural network (BPNN) with the topological structure NN(7-4-2) and the cross validation through leave-one-out (LOO) procedure, the correlation coefficient of cross validation is over 0.96. Because there exists a quite good linear relationship between the molar responses and molecular path parameters, BPNN (r = 0.989 and 0.968) does not show its nonlinear advantage over multiple linear regression(MLR) (r = 0.9976 and 0.9968) in both presently examined cases, FID and TCD in the GC technique, for molecular modelling and quantitative prediction.

摘要

提出了一种基于烷烃分子新型分子拓扑指数向量(称为分子路径向量,MPV)的新方法,并将其用于估计和预测各种烷烃的摩尔响应值。新型MPV,p = (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10)',直接从分子图的相互作用项导出,用于表征所有含1至10或11个碳原子的烷烃的分子结构。结果表明,在经典气相色谱中,MPV元素与FID和TCD检测器上的摩尔响应值之间存在非常好的相关性。基于给定的不同样本数量的校准集,并使用实际多元线性回归,分别给出了FID和TCD上摩尔响应值(SM)的定量结构-响应关系(QSRR)方程如下:SM(FID) = 15.4004881 + 17.9905995 X1 - 0.1652116 X2 - 0.6974103 X3 - 0.8452390 X4 - 0.2671000 X5 - 1.5657273 X6 + 0.0944440 X7,n = 50,m = 7,r = 0.9976,ST = 26.132,SR = 1.965 1,Ev = 99.72%,RMS = 1.801,F = 1231.71;SM(TCD) = 11.9946996 + 29.1490916 X1 - 4.7451669 X2 - 3.7673385 X3 - 1.4948330 X4 - 1.6278831 X5 - 0.7934611 X6 - 3.0566093 X7,n = 32,m = 7,r = 0.9968,ST = 15.72,SR = 1.4310,Ev = 99.59%,RMS = 1.239,F = 531.227。其中,独立描述变量X1 - X7指的是FID和TCD训练集中所有样本的分子路径向量中的元素P1、P2、P3、P4、P5、P6、P7;n、r、ST、SR、Ev、RMS和F分别是样本数量、回归系数、总标准差、标准残差、解释方差、均方根误差和F统计值。为了使用具有拓扑结构NN(7 - 4 - 2)的反向传播神经网络(BPNN)并通过留一法(LOO)程序进行交叉验证来测试这两个模型,交叉验证的相关系数超过0.96。由于摩尔响应与分子路径参数之间存在相当好的线性关系,在当前研究的两种情况下,即气相色谱技术中的FID和TCD,对于分子建模和定量预测,BPNN(r = 0.989和0.968)相对于多元线性回归(MLR)(r = 0.9976和0.9968)并未显示出其非线性优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验