Suppr超能文献

基于多元线性回归和神经网络的定量构效关系模型在新型抗结核化合物设计中的比较。

Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

机构信息

Centro de Química e Bioquímica (CQB), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Superior de Educação e Ciências, Alameda das Linhas de Torres 179, 1750 Lisboa, Portugal.

出版信息

Eur J Med Chem. 2013;70:831-45. doi: 10.1016/j.ejmech.2013.10.029. Epub 2013 Oct 23.

Abstract

The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models.

摘要

评估并比较了两种定量构效关系方法,即多元线性回归(MLR)和神经网络(NN),用于建模和预测抗结核活性。分析了一组 173 种属于酰肼家族且由 96 个描述符表示的潜在活性化合物的数据。使用多个线性回归(MLR)、单个前馈神经网络(FFNN)、FFNN 集合和关联神经网络(AsNN),基于四个不同的数据和不同类型的描述符构建了模型。基于不同的验证标准评估和讨论了不同技术的预测能力,结果表明,与所有其他方法相比,AsNN 通常在学习能力和预测抗结核行为方面表现出更好的性能。然而,MLR 具有指出负责这些化合物对抗结核分枝杆菌行为的最相关分子特征的优势。对于较大的数据(94 个化合物在训练集中,18 个在测试集中),使用七个描述符的 AsNN 获得了最佳结果(测试集中的 R(2)为 0.874,RMSE 为 0.437,而 MLR 中的 R(2)为 0.845,RMSE 为 0.472)。使用相同的数据和描述符训练了对向传播神经网络(CPNN)。从每个 CPNN 的权重水平和从 MLR 中检索到的信息仔细审查后,尝试了潜在活性化合物的合理设计。合成了两种新化合物并对 M. 进行了测试结核分枝杆菌的活性接近大多数模型预测的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验