Suppr超能文献

烟曲霉中导致对泊沙康唑敏感性降低的突变似乎局限于细胞色素P450 14α-脱甲基酶中的单个氨基酸。

Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase.

作者信息

Mann Paul A, Parmegiani Raulo M, Wei Shui-Qing, Mendrick Cara A, Li Xin, Loebenberg David, DiDomenico Beth, Hare Roberta S, Walker Scott S, McNicholas Paul M

机构信息

Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.

出版信息

Antimicrob Agents Chemother. 2003 Feb;47(2):577-81. doi: 10.1128/AAC.47.2.577-581.2003.

Abstract

To better understand the molecular basis of posaconazole (POS) resistance in Aspergillus fumigatus, resistant laboratory isolates were selected. Spontaneous mutants arose at a frequency of 1 in 10(8) and fell into two susceptibility groups, moderately resistant and highly resistant. Azole resistance in A. fumigatus was previously associated with decreased drug accumulation. We therefore analyzed the mutants for changes in levels of transcripts of genes encoding efflux pumps (mdr1 and mdr2) and/or alterations in accumulation of [(14)C]POS. No changes in either pump expression or drug accumulation were detected. Similarly, there was no change in expression of cyp51A or cyp51B, which encode the presumed target site for POS, cytochrome P450 14alpha-demethylase. DNA sequencing revealed that each resistant isolate carried a single point mutation in residue 54 of cyp51A. Mutations at the same locus were identified in three clinical A. fumigatus isolates exhibiting reduced POS susceptibility but not in susceptible clinical strains. To verify that these mutations were responsible for the resistance phenotype, we introduced them into the chromosome of a POS-susceptible A. fumigatus strain under the control of the glyceraldehyde phosphate dehydrogenase promoter. The transformants exhibited reductions in susceptibility to POS comparable to those exhibited by the original mutants, confirming that point mutations in the cyp51A gene in A. fumigatus can confer reduced susceptibility to POS.

摘要

为了更好地理解烟曲霉对泊沙康唑(POS)耐药的分子基础,我们筛选了耐药的实验室菌株。自发突变体出现的频率为1/10⁸,并分为两个敏感组,即中度耐药和高度耐药。烟曲霉对唑类药物的耐药性以前与药物蓄积减少有关。因此,我们分析了这些突变体中编码外排泵(mdr1和mdr2)的基因转录水平的变化和/或[¹⁴C]POS蓄积的改变。未检测到任何一种泵表达或药物蓄积的变化。同样,编码POS假定靶位点细胞色素P450 14α-脱甲基酶的cyp51A或cyp51B的表达也没有变化。DNA测序显示,每个耐药菌株在cyp51A的54位残基处都有一个单点突变。在三株对POS敏感性降低的临床烟曲霉分离株中鉴定出相同位点的突变,但在敏感临床菌株中未发现。为了验证这些突变是否导致耐药表型,我们将它们导入了在甘油醛-3-磷酸脱氢酶启动子控制下的对POS敏感的烟曲霉菌株的染色体中。转化体对POS的敏感性降低程度与原始突变体相当,证实烟曲霉cyp51A基因中的点突变可导致对POS的敏感性降低。

相似文献

3
Insight into the Significance of Aspergillus fumigatus cyp51A Polymorphisms.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.00241-18. Print 2018 Jun.
4
A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus.
Antimicrob Agents Chemother. 2003 Mar;47(3):1120-4. doi: 10.1128/AAC.47.3.1120-1124.2003.
5
Posaconazole is a potent inhibitor of sterol 14alpha-demethylation in yeasts and molds.
Antimicrob Agents Chemother. 2004 Oct;48(10):3690-6. doi: 10.1128/AAC.48.10.3690-3696.2004.
6
Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations.
Fungal Genet Biol. 2019 Nov;132:103265. doi: 10.1016/j.fgb.2019.103265. Epub 2019 Aug 26.
8
Point Mutation or Overexpression of Aspergillus fumigatus Encoding Lanosterol 14α-Sterol Demethylase, Leads to Triazole Resistance.
Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0125221. doi: 10.1128/AAC.01252-21. Epub 2021 Jul 26.
9
Molecular typing and in-vitro activity of azoles against clinical isolates of Aspergillus fumigatus and A. niger in Japan.
J Infect Chemother. 2011 Aug;17(4):483-6. doi: 10.1007/s10156-010-0202-1. Epub 2011 Jan 5.
10
Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India.
J Antimicrob Chemother. 2012 Feb;67(2):362-6. doi: 10.1093/jac/dkr443. Epub 2011 Oct 25.

引用本文的文献

1
Azole resistance in Aspergillus fumigatus- comprehensive review.
Arch Microbiol. 2024 Jun 15;206(7):305. doi: 10.1007/s00203-024-04026-z.
2
Importance of the Mismatch Repair Protein Msh6 in Antifungal Resistance Development.
J Fungi (Basel). 2024 Mar 12;10(3):210. doi: 10.3390/jof10030210.
3
Drug-Resistant spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe.
Pathogens. 2023 Oct 31;12(11):1305. doi: 10.3390/pathogens12111305.
4
Fungal Drug Response and Antimicrobial Resistance.
J Fungi (Basel). 2023 May 12;9(5):565. doi: 10.3390/jof9050565.
5
Beyond Ergosterol: Strategies for Combatting Antifungal Resistance in and .
Tetrahedron. 2023 Mar 3;133. doi: 10.1016/j.tet.2023.133268. Epub 2023 Jan 11.
6
Understanding the environmental drivers of clinical azole resistance in species.
Drug Target Insights. 2022 Nov 22;16:25-35. doi: 10.33393/dti.2022.2476. eCollection 2022 Jan-Dec.
7
Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern.
Curr Res Virol Sci. 2022;3:100019. doi: 10.1016/j.crviro.2022.100019. Epub 2022 Jan 15.
9
Mechanisms of triazole resistance in Aspergillus fumigatus.
Environ Microbiol. 2020 Dec;22(12):4934-4952. doi: 10.1111/1462-2920.15274. Epub 2020 Oct 21.
10
Uncovering New Mutations Conferring Azole Resistance in the Gene.
Front Microbiol. 2020 Jan 21;10:3127. doi: 10.3389/fmicb.2019.03127. eCollection 2019.

本文引用的文献

2
Molecular basis of resistance to azole antifungals.
Trends Mol Med. 2002 Feb;8(2):76-81. doi: 10.1016/s1471-4914(02)02280-3.
3
In vitro antifungal activity of posaconazole against various pathogenic fungi.
Int J Antimicrob Agents. 2001 Aug;18(2):167-72. doi: 10.1016/s0924-8579(01)00363-6.
5
Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance.
Med Mycol. 2001 Jun;39(3):299-302. doi: 10.1080/mmy.39.3.299.302.
9
Antifungal drug resistance in Aspergillus.
J Infect. 2000 Nov;41(3):203-20. doi: 10.1053/jinf.2000.0747.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验