Suppr超能文献

在单个完整细胞中对增强绿色荧光蛋白(EGFP)核渗透进行实时成像。

Real-time imaging of nuclear permeation by EGFP in single intact cells.

作者信息

Wei Xunbin, Henke Vanessa G, Strübing Carsten, Brown Edward B, Clapham David E

机构信息

Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA.

出版信息

Biophys J. 2003 Feb;84(2 Pt 1):1317-27. doi: 10.1016/S0006-3495(03)74947-9.

Abstract

The NPC is the portal for the exchange of proteins, mRNA, and ions between nucleus and cytoplasm. Many small molecules (<10 kDa) permeate the nucleus by simple diffusion through the pore, but molecules larger than 70 kDa require ATP and a nuclear localization sequence for their transport. In isolated Xenopus oocyte nuclei, diffusion of intermediate-sized molecules appears to be regulated by the NPC, dependent upon [Ca(2+)] in the nuclear envelope. We have applied real-time imaging and fluorescence recovery after photobleaching to examine the nuclear pore permeability of 27-kDa EGFP in single intact cells. We found that EGFP diffused bidirectionally via the NPC across the nuclear envelope. Although diffusion is slowed approximately 100-fold at the nuclear envelope boundary compared to diffusion within the nucleus or cytoplasm, this delay is expected for the reduced cross-sectional area of the NPCs. We found no evidence for significant nuclear pore gating or block of EGFP diffusion by depletion of perinuclear Ca(2+) stores, as assayed by a nuclear cisterna-targeted Ca(2+) indicator. We also found that EGFP exchange was not altered significantly during the cell cycle.

摘要

核孔复合体是细胞核与细胞质之间蛋白质、信使核糖核酸和离子交换的通道。许多小分子(<10 kDa)通过核孔的简单扩散进入细胞核,但大于70 kDa的分子需要ATP和核定位序列才能运输。在分离的非洲爪蟾卵母细胞核中,中等大小分子的扩散似乎受核孔复合体调控,这取决于核膜中的[Ca(2+)]。我们应用实时成像和光漂白后的荧光恢复技术,来检测单个完整细胞中27-kDa增强型绿色荧光蛋白(EGFP)的核孔通透性。我们发现EGFP通过核孔复合体在核膜两侧双向扩散。尽管与在细胞核或细胞质内的扩散相比,EGFP在核膜边界处的扩散速度减慢了约100倍,但鉴于核孔复合体的横截面积减小,这种延迟是可以预期的。通过核池靶向的Ca(2+)指示剂检测,我们没有发现核孔显著门控或由于核周Ca(2+)储存耗尽而导致EGFP扩散受阻的证据。我们还发现,在细胞周期中EGFP的交换没有显著改变。

相似文献

1
Real-time imaging of nuclear permeation by EGFP in single intact cells.
Biophys J. 2003 Feb;84(2 Pt 1):1317-27. doi: 10.1016/S0006-3495(03)74947-9.
2
Passive transport of macromolecules through Xenopus laevis nuclear envelope.
J Membr Biol. 2003 Dec 1;196(3):147-55. doi: 10.1007/s00232-003-0632-0.
4
Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store.
Science. 1995 Dec 15;270(5243):1835-8. doi: 10.1126/science.270.5243.1835.
5
Regulation of nuclear pore complex conformation by IP(3) receptor activation.
Biophys J. 2002 Sep;83(3):1421-8. doi: 10.1016/S0006-3495(02)73913-1.
6
Nuclear calcium and the regulation of the nuclear pore complex.
Bioessays. 1997 Sep;19(9):787-92. doi: 10.1002/bies.950190908.
7
Evidence for Ca2+- and ATP-sensitive peripheral channels in nuclear pore complexes.
FASEB J. 2001 Sep;15(11):1895-901. doi: 10.1096/fj.00-0838com.
8
Nuclear pores form de novo from both sides of the nuclear envelope.
Science. 2006 Apr 21;312(5772):440-3. doi: 10.1126/science.1124196.
10
The role of nuclear envelope calcium in modifying nuclear pore complex structure.
Can J Physiol Pharmacol. 2006 Mar-Apr;84(3-4):309-18. doi: 10.1139/y05-109.

引用本文的文献

2
Mechanism of exportin retention in the cell nucleus.
J Cell Biol. 2024 Feb 5;223(2). doi: 10.1083/jcb.202306094. Epub 2024 Jan 19.
3
Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids.
Dis Model Mech. 2023 Nov 1;16(11). doi: 10.1242/dmm.050193. Epub 2023 Nov 21.
4
Peptide-Mediated Targeted Delivery of Aloe-Emodin as Anticancer Drug.
Molecules. 2022 Jul 19;27(14):4615. doi: 10.3390/molecules27144615.
5
The Nuclear Envelope as a Regulator of Immune Cell Function.
Front Immunol. 2022 Jun 10;13:840069. doi: 10.3389/fimmu.2022.840069. eCollection 2022.
6
Molecular and cellular dynamics of early embryonic cell divisions in Volvox carteri.
Plant Cell. 2022 Mar 29;34(4):1326-1353. doi: 10.1093/plcell/koac004.
7
Autosomal recessive variants in a proband with a cerebrorenal syndrome and no parental consanguinity.
Cold Spring Harb Mol Case Stud. 2022 Mar 24;8(2). doi: 10.1101/mcs.a006137. Print 2022 Feb.
8
Ventral stress fibers induce plasma membrane deformation in human fibroblasts.
Mol Biol Cell. 2021 Aug 19;32(18):1707-1723. doi: 10.1091/mbc.E21-03-0096. Epub 2021 Jun 30.

本文引用的文献

1
Evidence for Ca2+- and ATP-sensitive peripheral channels in nuclear pore complexes.
FASEB J. 2001 Sep;15(11):1895-901. doi: 10.1096/fj.00-0838com.
2
Kinetic analysis of translocation through nuclear pore complexes.
EMBO J. 2001 Mar 15;20(6):1320-30. doi: 10.1093/emboj/20.6.1320.
3
Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts.
Science. 2000 May 26;288(5470):1429-32. doi: 10.1126/science.288.5470.1429.
4
Gatekeepers of the nucleus.
Science. 2000 May 26;288(5470):1374-7. doi: 10.1126/science.288.5470.1374.
6
Nuclear pore function viewed with atomic force microscopy.
Pflugers Arch. 2000 Apr;439(6):671-81. doi: 10.1007/s004240000249.
7
The nuclear pore complex: mediator of translocation between nucleus and cytoplasm.
J Cell Sci. 2000 May;113 ( Pt 10):1651-9. doi: 10.1242/jcs.113.10.1651.
9
Nuclear protein transport pathways.
Exp Nephrol. 1999 Jul-Aug;7(4):290-4. doi: 10.1159/000020616.
10
Cell cycle control of PDGF-induced Ca(2+) signaling through modulation of sphingolipid metabolism.
FASEB J. 1999 Aug;13(11):1291-301. doi: 10.1096/fasebj.13.11.1291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验