Suppr超能文献

Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2.

作者信息

Janz Jay M, Fay Jonathan F, Farrens David L

机构信息

Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97201, USA.

出版信息

J Biol Chem. 2003 May 9;278(19):16982-91. doi: 10.1074/jbc.M210567200. Epub 2003 Jan 23.

Abstract

The rhodopsin crystal structure reveals that intradiscal loop E-2 covers the 11-cis-retinal, creating a "retinal plug." Recently, we noticed the ends of loop E-2 are linked by an ion pair between residues Arg-177 and Asp-190, near the highly conserved disulfide bond. This ion pair appears biologically significant; it is conserved in almost all vertebrate opsins and may occur in other G-protein-coupled receptors. We report here that the Arg-177/Asp-190 ion pair is critical for the folding and stability of dark state rhodopsin. We find ion pair mutants that regenerate with retinal are functionally and spectrally wild-type-like yet thermally unstable in their dark state because of rapid hydrolysis of the retinal Schiff base linkage. Surprisingly, Arrhenius analysis indicates that the activation energies for the hydrolysis process are similar between the ion pair mutants and wild-type rhodopsin. Furthermore, the ion pair mutants do not show increased reactivity toward hydroxylamine, suggesting that their instability is not caused by an increased exposure to bulk solvent. Our results indicate that the loop E-2 ion pair is important for rhodopsin stability and thus suggest that retinitis pigmentosa observed in patients with Asp-190 mutations may in part be the result of thermally unstable rhodopsin proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验