Prigge Sean T, He Xin, Gerena Lucia, Waters Norman C, Reynolds Kevin A
Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
Biochemistry. 2003 Feb 4;42(4):1160-9. doi: 10.1021/bi026847k.
Malaria, a disease caused by protozoan parasites of the genus Plasmodium, is one of the most dangerous infectious diseases, claiming millions of lives and infecting hundreds of millions of people annually. The pressing need for new antimalarials has been answered by the discovery of new drug targets from the malaria genome project. One of the early findings was the discovery of two genes encoding Type II fatty acid biosynthesis proteins: ACP (acyl carrier protein) and KASIII (beta-ketoacyl-ACP synthase III). The initiating steps of a Type II system require a third protein: malonyl-coenzyme A:ACP transacylase (MCAT). Here we report the identification of a single gene from P. falciparum encoding pfMCAT and the functional characterization of this enzyme. Pure recombinant pfMCAT catalyzes malonyl transfer from malonyl-coenzyme A (malonyl-CoA) to pfACP. In contrast, pfACP(trans), a construct of pfACP containing an amino-terminal apicoplast transit peptide, was not a substrate for pfMCAT. The product of the pfMCAT reaction, malonyl-pfACP, is a substrate for pfKASIII, which catalyzes the decarboxylative condensation of malonyl-pfACP and various acyl-CoAs. Consistent with a role in de novo fatty acid biosynthesis, pfKASIII exhibited typical KAS (beta-ketoacyl ACP synthase) activity using acetyl-CoA as substrate (k(cat) 230 min(-1), K(M) 17.9 +/- 3.4 microM). The pfKASIII can also catalyze the condensation of malonyl-pfACP and butyryl-CoA (k(cat) 200 min(-1), K(M) 35.7 +/- 4.4 microM) with similar efficiency, whereas isobutyryl-CoA is a poor substrate and displayed 13-fold less activity than that observed for acetyl-CoA. The pfKASIII has little preference for malonyl-pfACP (k(cat)/K(M) 64.9 min(-1)microM(-1)) over E. coli malonyl-ACP (k(cat)/K(M) 44.8 min(-1)microM(-1)). The pfKASIII also catalyzes the acyl-CoA:ACP transacylase (ACAT) reaction typically exhibited by KASIII enzymes, but does so almost 700-fold slower than the KAS reaction. Thiolactomycin did not inhbit pfKASIII (IC(50) > 330 microM), but three structurally similar substituted 1,2-dithiole-3-one compounds did inhibit pfKASIII with IC(50) values between 0.53 microM and 10.4 microM. These compounds also inhibited the growth of P. falciparum in culture.
疟疾是由疟原虫属原生动物寄生虫引起的一种疾病,是最危险的传染病之一,每年导致数百万人死亡,数亿人感染。疟疾基因组计划发现了新的药物靶点,满足了对新型抗疟药物的迫切需求。早期发现之一是发现了两个编码II型脂肪酸生物合成蛋白的基因:酰基载体蛋白(ACP)和β-酮酰基-ACP合酶III(KASIII)。II型系统的起始步骤需要第三种蛋白质:丙二酰辅酶A:ACP转酰基酶(MCAT)。在此,我们报告了从恶性疟原虫中鉴定出一个编码pfMCAT的单一基因,并对该酶进行了功能表征。纯重组pfMCAT催化丙二酰基从丙二酰辅酶A(丙二酰-CoA)转移到pfACP。相比之下,pfACP(trans)是一种含有氨基末端质体转运肽的pfACP构建体,不是pfMCAT的底物。pfMCAT反应的产物丙二酰-pfACP是pfKASIII的底物,pfKASIII催化丙二酰-pfACP与各种酰基辅酶A的脱羧缩合反应。与在脂肪酸从头生物合成中的作用一致,pfKASIII以乙酰辅酶A为底物表现出典型的KAS(β-酮酰基ACP合酶)活性(催化常数k(cat)为230 min⁻¹,米氏常数K(M)为17.9±3.4 μM)。pfKASIII也能以相似的效率催化丙二酰-pfACP与丁酰辅酶A的缩合反应(催化常数k(cat)为200 min⁻¹,米氏常数K(M)为35.7±4.4 μM),而异丁酰辅酶A是一种较差的底物,其活性比乙酰辅酶A低13倍。与大肠杆菌丙二酰-ACP相比,pfKASIII对丙二酰-pfACP的偏好性较小(催化常数与米氏常数的比值k(cat)/K(M)为64.9 min⁻¹μM⁻¹,大肠杆菌丙二酰-ACP的k(cat)/K(M)为44.8 min⁻¹μM⁻¹)。pfKASIII还催化KASIII酶通常表现出的酰基辅酶A:ACP转酰基酶(ACAT)反应,但速度比KAS反应慢近700倍。硫霉素不抑制pfKASIII(半数抑制浓度IC(50)>330 μM),但三种结构相似的取代1,2-二硫杂环戊烯-3-酮化合物确实抑制pfKASIII,IC(50)值在0.53 μM至10.4 μM之间。这些化合物也抑制了恶性疟原虫在培养物中的生长。