Suppr超能文献

一种仿生运动性测定法有助于深入了解基于肌动蛋白的运动机制。

A biomimetic motility assay provides insight into the mechanism of actin-based motility.

作者信息

Wiesner Sebastian, Helfer Emmanuele, Didry Dominique, Ducouret Guylaine, Lafuma Françoise, Carlier Marie-France, Pantaloni Dominique

机构信息

Dynamique du cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.

出版信息

J Cell Biol. 2003 Feb 3;160(3):387-98. doi: 10.1083/jcb.200207148. Epub 2003 Jan 27.

Abstract

Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 microm) nor by increasing the viscosity of the medium by 10(5)-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.

摘要

一种仿生运动分析方法被用于分析通过肌动蛋白的定点聚合产生力的机制。聚苯乙烯微球通过N-WASP蛋白(Arp2/3复合物的普遍激活剂)以可控方式进行功能化,在由五种纯蛋白组成的介质中经历基于肌动蛋白的推进。我们分析了速度对N-WASP表面密度、封端蛋白浓度和外力的依赖性。增加珠子直径(0.2至3微米)或使介质粘度增加10^5倍都不会使运动减慢。这一重要结果表明,肌动蛋白聚合产生的力被由于细丝末端在表面的瞬时附着产生的内力所平衡。这些力大于粘性阻力。使用Alexa488标记的Arp2/3,我们表明Arp2/3通过细丝在珠子表面的刺端分支而非侧分支并入肌动蛋白尾部,并且随着凝溶胶蛋白浓度的增加,细丝分支更密集。这些数据支持了这样的模型,即细丝分支和封端的速率控制速度,并且细丝末端的自催化分支而非细丝成核发生在颗粒表面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c06b/2172664/d8b4481005e8/200207148f1.jpg

相似文献

1
A biomimetic motility assay provides insight into the mechanism of actin-based motility.
J Cell Biol. 2003 Feb 3;160(3):387-98. doi: 10.1083/jcb.200207148. Epub 2003 Jan 27.
2
Actin-based motility as a self-organized system: mechanism and reconstitution in vitro.
C R Biol. 2003 Feb;326(2):161-70. doi: 10.1016/s1631-0691(03)00067-2.
5
Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2.
J Cell Sci. 2001 Dec;114(Pt 24):4533-42. doi: 10.1242/jcs.114.24.4533.
6
Formation of filopodia-like bundles in vitro from a dendritic network.
J Cell Biol. 2003 Mar 17;160(6):951-62. doi: 10.1083/jcb.200208059.
7
Actin filament attachments for sustained motility in vitro are maintained by filament bundling.
PLoS One. 2012;7(2):e31385. doi: 10.1371/journal.pone.0031385. Epub 2012 Feb 16.
8
Actin filaments align into hollow comets for rapid VASP-mediated propulsion.
Curr Biol. 2004 Oct 5;14(19):1766-71. doi: 10.1016/j.cub.2004.09.054.
9
Control of actin assembly and disassembly at filament ends.
Curr Opin Cell Biol. 2000 Feb;12(1):97-103. doi: 10.1016/s0955-0674(99)00062-9.
10
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments.
J Cell Biol. 2003 Feb 3;160(3):399-407. doi: 10.1083/jcb.200212057.

引用本文的文献

1
Reconstituted systems for studying the architecture and dynamics of actin networks.
Biochem J. 2025 May 23;482(11):691-708. doi: 10.1042/BCJ20253044.
2
Reconstitution of Arp2/3-nucleated actin assembly with proteins CP, V-1, and CARMIL.
Curr Biol. 2024 Nov 18;34(22):5173-5186.e4. doi: 10.1016/j.cub.2024.09.051. Epub 2024 Oct 21.
3
A unified purification method for actin-binding proteins using a TEV-cleavable His-Strep-tag.
MethodsX. 2024 Aug 6;13:102884. doi: 10.1016/j.mex.2024.102884. eCollection 2024 Dec.
4
Synthetic control of actin polymerization and symmetry breaking in active protocells.
Sci Adv. 2024 Jun 14;10(24):eadk9731. doi: 10.1126/sciadv.adk9731. Epub 2024 Jun 12.
5
Reconstitution of Arp2/3-Nucleated Actin Assembly with CP, V-1 and CARMIL.
bioRxiv. 2024 May 13:2024.05.13.593916. doi: 10.1101/2024.05.13.593916.
6
Biochemical and mechanical regulation of actin dynamics.
Nat Rev Mol Cell Biol. 2022 Dec;23(12):836-852. doi: 10.1038/s41580-022-00508-4. Epub 2022 Aug 2.
7
The molecular mechanism of load adaptation by branched actin networks.
Elife. 2022 Jun 24;11:e73145. doi: 10.7554/eLife.73145.
8
Erythro-VLPs: Anchoring SARS-CoV-2 spike proteins in erythrocyte liposomes.
PLoS One. 2022 Mar 11;17(3):e0263671. doi: 10.1371/journal.pone.0263671. eCollection 2022.
9
Profilin choreographs actin and microtubules in cells and cancer.
Int Rev Cell Mol Biol. 2020;355:155-204. doi: 10.1016/bs.ircmb.2020.05.005. Epub 2020 Jul 16.
10
Lamellipodium tip actin barbed ends serve as a force sensor.
Genes Cells. 2019 Nov;24(11):705-718. doi: 10.1111/gtc.12720. Epub 2019 Oct 10.

本文引用的文献

1
Growth velocities of branched actin networks.
Biophys J. 2003 May;84(5):2907-18. doi: 10.1016/S0006-3495(03)70018-6.
2
Force generation by actin polymerization II: the elastic ratchet and tethered filaments.
Biophys J. 2003 Mar;84(3):1591-605. doi: 10.1016/S0006-3495(03)74969-8.
3
The force-velocity relationship for the actin-based motility of Listeria monocytogenes.
Curr Biol. 2003 Feb 18;13(4):329-32. doi: 10.1016/s0960-9822(03)00051-4.
4
Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16782-7. doi: 10.1073/pnas.222652499. Epub 2002 Dec 3.
5
The dynamics of actin-based motility depend on surface parameters.
Nature. 2002 May 16;417(6886):308-11. doi: 10.1038/417308a.
7
Arp2/3 complex: advances on the inner workings of a molecular machine.
Cell. 2001 Dec 14;107(6):703-5. doi: 10.1016/s0092-8674(01)00605-5.
8
Growth of branched actin networks against obstacles.
Biophys J. 2001 Oct;81(4):1907-23. doi: 10.1016/S0006-3495(01)75842-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验