Mogilner Alex, Oster George
Department of Mathematics and Center for Genetics and Development, University of California, Davis 95616, USA.
Biophys J. 2003 Mar;84(3):1591-605. doi: 10.1016/S0006-3495(03)74969-8.
The motion of many intracellular pathogens is driven by the polymerization of actin filaments. The propulsive force developed by the polymerization process is thought to arise from the thermal motions of the polymerizing filament tips. Recent experiments suggest that the nucleation of actin filaments involves a phase when the filaments are attached to the pathogen surface by a protein complex. Here we extend the "elastic ratchet model" of Mogilner and Oster to incorporate these new findings. We apply this "tethered ratchet" model to derive the force-velocity relation for Listeria and discuss relations of our theoretical predictions to experimental measurements. We also discuss "symmetry breaking" dynamics observed in ActA-coated bead experiments, and the implications of the model for lamellipodial protrusion in migrating cells.
许多细胞内病原体的运动是由肌动蛋白丝的聚合驱动的。聚合过程产生的推进力被认为源于聚合丝尖端的热运动。最近的实验表明,肌动蛋白丝的成核涉及一个阶段,在此阶段丝通过蛋白质复合物附着在病原体表面。在这里,我们扩展了莫吉尔纳和奥斯特的“弹性棘轮模型”以纳入这些新发现。我们应用这个“拴系棘轮”模型来推导李斯特菌的力-速度关系,并讨论我们的理论预测与实验测量结果的关系。我们还讨论了在涂有埃博拉病毒表面蛋白(ActA)的珠子实验中观察到的“对称性破缺”动力学,以及该模型对迁移细胞中片状伪足突出的影响。