Suppr超能文献

肌动蛋白聚合作用产生的力II:弹性棘轮与系留丝

Force generation by actin polymerization II: the elastic ratchet and tethered filaments.

作者信息

Mogilner Alex, Oster George

机构信息

Department of Mathematics and Center for Genetics and Development, University of California, Davis 95616, USA.

出版信息

Biophys J. 2003 Mar;84(3):1591-605. doi: 10.1016/S0006-3495(03)74969-8.

Abstract

The motion of many intracellular pathogens is driven by the polymerization of actin filaments. The propulsive force developed by the polymerization process is thought to arise from the thermal motions of the polymerizing filament tips. Recent experiments suggest that the nucleation of actin filaments involves a phase when the filaments are attached to the pathogen surface by a protein complex. Here we extend the "elastic ratchet model" of Mogilner and Oster to incorporate these new findings. We apply this "tethered ratchet" model to derive the force-velocity relation for Listeria and discuss relations of our theoretical predictions to experimental measurements. We also discuss "symmetry breaking" dynamics observed in ActA-coated bead experiments, and the implications of the model for lamellipodial protrusion in migrating cells.

摘要

许多细胞内病原体的运动是由肌动蛋白丝的聚合驱动的。聚合过程产生的推进力被认为源于聚合丝尖端的热运动。最近的实验表明,肌动蛋白丝的成核涉及一个阶段,在此阶段丝通过蛋白质复合物附着在病原体表面。在这里,我们扩展了莫吉尔纳和奥斯特的“弹性棘轮模型”以纳入这些新发现。我们应用这个“拴系棘轮”模型来推导李斯特菌的力-速度关系,并讨论我们的理论预测与实验测量结果的关系。我们还讨论了在涂有埃博拉病毒表面蛋白(ActA)的珠子实验中观察到的“对称性破缺”动力学,以及该模型对迁移细胞中片状伪足突出的影响。

相似文献

1
Force generation by actin polymerization II: the elastic ratchet and tethered filaments.
Biophys J. 2003 Mar;84(3):1591-605. doi: 10.1016/S0006-3495(03)74969-8.
2
Soft Listeria: actin-based propulsion of liquid drops.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906. doi: 10.1103/PhysRevE.69.061906. Epub 2004 Jun 2.
3
Mechanics model for actin-based motility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021916. doi: 10.1103/PhysRevE.79.021916. Epub 2009 Feb 26.
4
5
Cell motility driven by actin polymerization.
Biophys J. 1996 Dec;71(6):3030-45. doi: 10.1016/S0006-3495(96)79496-1.
6
Role of tensile stress in actin gels and a symmetry-breaking instability.
Eur Phys J E Soft Matter. 2004 Mar;13(3):247-59. doi: 10.1140/epje/i2003-10073-y.
7
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Biophys J. 2006 Aug 15;91(4):1548-63. doi: 10.1529/biophysj.106.082362. Epub 2006 May 26.
9
Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails.
Mol Biol Cell. 2012 Feb;23(4):614-29. doi: 10.1091/mbc.E11-06-0584. Epub 2012 Jan 4.
10
The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
Eur Biophys J. 2004 Jul;33(4):310-20. doi: 10.1007/s00249-003-0370-3. Epub 2003 Dec 9.

引用本文的文献

1
Aligned Collagen Fibers Drive Distinct Traction Force Signatures to Regulate Contact Guidance.
ACS Nano. 2025 Aug 26;19(33):30165-30185. doi: 10.1021/acsnano.5c06736. Epub 2025 Aug 14.
3
Competing signaling pathways controls electrotaxis.
iScience. 2025 Apr 2;28(5):112329. doi: 10.1016/j.isci.2025.112329. eCollection 2025 May 16.
4
Glycocalyx-induced formation of membrane tubes.
Biophys J. 2025 May 20;124(10):1631-1642. doi: 10.1016/j.bpj.2025.04.006. Epub 2025 Apr 11.
5
Energy-based modelling of single actin filament polymerization using bond graphs.
J R Soc Interface. 2025 Jan;22(222):20240404. doi: 10.1098/rsif.2024.0404. Epub 2025 Jan 30.
6
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake.
J Mater Chem B. 2025 Feb 12;13(7):2335-2351. doi: 10.1039/d5tb00074b.
7
Physical principles and mechanisms of cell migration.
NPJ Biol Phys Mech. 2025;2(1):2. doi: 10.1038/s44341-024-00008-w. Epub 2025 Jan 16.
8
On the generation of force required for actin-based motility.
Sci Rep. 2024 Aug 8;14(1):18384. doi: 10.1038/s41598-024-69422-3.
9
Myosin-independent stiffness sensing by fibroblasts is regulated by the viscoelasticity of flowing actin.
Commun Mater. 2024;5. doi: 10.1038/s43246-024-00444-0. Epub 2024 Jan 15.
10
Adaptive nonequilibrium design of actin-based metamaterials: Fundamental and practical limits of control.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2310238121. doi: 10.1073/pnas.2310238121. Epub 2024 Feb 15.

本文引用的文献

1
The force-velocity relationship for the actin-based motility of Listeria monocytogenes.
Curr Biol. 2003 Feb 18;13(4):329-32. doi: 10.1016/s0960-9822(03)00051-4.
2
The dynamics of actin-based motility depend on surface parameters.
Nature. 2002 May 16;417(6886):308-11. doi: 10.1038/417308a.
3
Clamped-filament elongation model for actin-based motors.
Biophys J. 2002 Feb;82(2):605-17. doi: 10.1016/S0006-3495(02)75425-8.
4
Growth of branched actin networks against obstacles.
Biophys J. 2001 Oct;81(4):1907-23. doi: 10.1016/S0006-3495(01)75842-0.
6
Mechanism of actin-based motility.
Science. 2001 May 25;292(5521):1502-6. doi: 10.1126/science.1059975.
7
Probing the relation between force--lifetime--and chemistry in single molecular bonds.
Annu Rev Biophys Biomol Struct. 2001;30:105-28. doi: 10.1146/annurev.biophys.30.1.105.
8
Secrets of actin-based motility revealed by a bacterial pathogen.
Nat Rev Mol Cell Biol. 2000 Nov;1(2):110-9. doi: 10.1038/35040061.
9
Regulating cellular actin assembly.
Curr Opin Cell Biol. 2001 Apr;13(2):158-66. doi: 10.1016/s0955-0674(00)00193-9.
10
Dendritic organization of actin comet tails.
Curr Biol. 2001 Jan 23;11(2):130-5. doi: 10.1016/s0960-9822(01)00022-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验