Noel Timothy R, Parker Roger, Ring Stephen G
Food Materials Science Division, Institute of Food Research, Norwich Research Park, Colney, NR4 7UA, Norwich, UK.
Carbohydr Res. 2003 Feb 14;338(5):433-8. doi: 10.1016/s0008-6215(02)00497-4.
The effect of carbohydrate structure on the conductivity of low water content amorphous carbohydrate-water, and carbohydrate-water-KCl mixtures, has been measured using both direct current and alternating current techniques at temperatures in the supercooled liquid and glassy range, ranging from -40 to 80 degrees C. The structures included homologous mono-, di- and trisaccharides (glucose, maltose and maltotriose), a monosaccharide with no exocyclic hydroxymethyl group (xylose) and a second trisaccharide (raffinose). The KCl-mixtures contained 9.3% w/w water and 0.74% w/w KCl which resulted in calorimetric glass transition temperatures, T(g), in the range -29-19 degrees C. At this concentration conduction due to KCl dominated that due to intrinsic conductors originating from the carbohydrates and water. In the supercooled liquid region, as temperature, T, is reduced to T(g), the activation energy of the molar conductivity of KCl, Lambda(m), increased as described by a Vogel-Tamman-Fulcher-type equation, Lambda(m)=Lambda(m0)exp[B/(T-T(0))], where Lambda(m0), B and T(0) are constants. Comparison of the molar conductivity of KCl in the carbohydrate mixtures at T(g) with that in aqueous solutions showed that conductivity is, to varying extents, uncoupled from viscosity. The uncoupling increased in the order D-xylose<D-glucose<maltose<maltotriose and raffinose. The results suggest that the primary structural characteristic determining conductivity is molecular weight, though the presence of the exocyclic hydroxymethyl group in the monosaccharide also has an effect. Whilst at T(g) the D-xylose mixture had the lowest conductivity, at a particular temperature the trisaccharide mixtures of maltotriose and raffinose had the lowest conductivities.
在-40至80摄氏度的过冷液体和玻璃态温度范围内,使用直流和交流技术测量了碳水化合物结构对低含水量无定形碳水化合物 - 水以及碳水化合物 - 水 - 氯化钾混合物电导率的影响。这些结构包括同源的单糖、二糖和三糖(葡萄糖、麦芽糖和麦芽三糖)、一种没有环外羟甲基的单糖(木糖)以及另一种三糖(棉子糖)。氯化钾混合物含有9.3%(重量/重量)的水和0.74%(重量/重量)的氯化钾,这导致量热玻璃化转变温度T(g)在-29至19摄氏度范围内。在此浓度下,由氯化钾引起的传导占主导地位,超过了由碳水化合物和水产生的本征导体引起的传导。在过冷液体区域,当温度T降至T(g)时,氯化钾摩尔电导率的活化能Lambda(m)按照Vogel-Tamman-Fulcher型方程Lambda(m)=Lambda(m0)exp[B/(T - T(0))]增加,其中Lambda(m0)、B和T(0)为常数。将T(g)时碳水化合物混合物中氯化钾的摩尔电导率与水溶液中的进行比较,结果表明电导率在不同程度上与粘度解耦。解耦程度按D - 木糖<D - 葡萄糖<麦芽糖<麦芽三糖和棉子糖的顺序增加。结果表明,决定电导率的主要结构特征是分子量,尽管单糖中环外羟甲基的存在也有影响。虽然在T(g)时D - 木糖混合物的电导率最低,但在特定温度下,麦芽三糖和棉子糖的三糖混合物电导率最低。