Rebelo Jorge, Auerbach Günter, Bader Gerd, Bracher Andreas, Nar Herbert, Hösl Cornelia, Schramek Nicholas, Kaiser Johannes, Bacher Adelbert, Huber Robert, Fischer Markus
Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany.
J Mol Biol. 2003 Feb 14;326(2):503-16. doi: 10.1016/s0022-2836(02)01303-7.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.
GTP环化水解酶I催化从GTP水解释放甲酸,随后环化生成二氢新蝶呤三磷酸。细菌和动物的该酶是同型十聚体,每个亚基含有一个锌离子。将大肠杆菌中该酶的Cys110、Cys181、His112或His113替换为丝氨酸,会产生催化无活性的突变蛋白,其结合锌的能力降低。这些突变蛋白无法将GTP或关键反应中间体2-氨基-5-甲酰氨基-6-(β-核糖氨基)-4(3H)-嘧啶酮5'-三磷酸转化为二氢新蝶呤三磷酸。分别以2.5Å、2.8Å和3.2Å的分辨率测定的His113Ser、His112Ser和Cys181Ser突变蛋白的GTP复合物晶体结构,揭示了活性位点腔中底物GTP的构象。高度保守的残基Glu152的羧基通过与N-3和2位氨基形成氢键来锚定底物GTP。几个碱性氨基酸残基与底物的三磷酸部分相互作用。以2.1Å的分辨率测定的His112Ser突变体与未定义核苷酸混合物的复合物结构提供了肽折叠的更多细节。野生型和突变型酶结构之间的比较表明,具有催化活性的锌离子直接与Cys110、Cys181和His113配位。此外,锌离子与一个水分子络合,该水分子与His112紧密形成氢键。与锌蛋白酶非常相似,锌配位的水分子被认为攻击底物的C-8,生成与锌结合的GTP的8R水合物。水合咪唑环的打开产生一种甲酰胺衍生物,该衍生物仍与锌配位。随后甲酰胺基序的水解绝对需要锌离子催化。甲酰胺键的水解与锌蛋白酶催化的肽水解在机制上有密切的相似性。