Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31838-31849. doi: 10.1073/pnas.2013473117. Epub 2020 Nov 23.
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.
三磷酸鸟苷 (GTP) 环水解酶 I (GCH1) 催化 GTP 转化为二氢新喋呤三磷酸 (H2NTP),这是四氢生物蝶呤 (BH4) 生物合成的起始步骤。除了其他作用外,BH4 还作为神经递质生物合成的辅助因子。BH4 生物合成途径和 GCH1 已被确定为治疗患者疼痛障碍的有前途的靶点。哺乳动物 GCH1s 的功能受代谢感应机制调节,该机制涉及调节蛋白 GCH1 反馈调节蛋白 (GFRP)。GFRP 与 GCH1 结合形成抑制或激活复合物,具体取决于辅因子配体 BH4 和苯丙氨酸的可用性。我们通过冷冻电子显微镜 (cryo-EM) 确定了人 GCH1-GFRP 复合物的高分辨率结构。cryo-EM 揭示了特定和相关表面衬里环的结构灵活性,由于晶体包装效应,以前通过 X 射线晶体学无法检测到。此外,我们通过 X 射线晶体学研究了分离的 GCH1 的变构调节。利用组合结构信息,我们能够获得变构调节机制的全面描述。BH4 结合引起变构口袋中的局部重排,导致酶的四级结构发生剧烈变化,导致抑制蛋白更紧凑、更紧张的形式,并转移到活性部位,导致其周围环境的开放、更灵活的结构。酶活性的抑制不是由于底物结合受阻,而是由于底物结合动力学的加速,如饱和转移差异 NMR (STD-NMR) 和定点突变所表明的那样。我们提出了一种变构、非竞争性抑制的离解速率控制机制。