Suppr超能文献

GTP环化水解酶II的结构与作用机制。

GTP cyclohydrolase II structure and mechanism.

作者信息

Ren Jingshan, Kotaka Masayo, Lockyer Michael, Lamb Heather K, Hawkins Alastair R, Stammers David K

机构信息

Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.

出版信息

J Biol Chem. 2005 Nov 4;280(44):36912-9. doi: 10.1074/jbc.M507725200. Epub 2005 Aug 22.

Abstract

GTP cyclohydrolase II converts GTP to 2,5-diamino-6-beta-ribosyl-4(3H)-pyrimidinone 5'-phosphate, formate and pyrophosphate, the first step in riboflavin biosynthesis. The essential role of riboflavin in metabolism and the absence of GTP cyclohydrolase II in higher eukaryotes makes it a potential novel selective antimicrobial drug target. GTP cyclohydrolase II catalyzes a distinctive overall reaction from GTP cyclohydrolase I; the latter converts GTP to dihydroneopterin triphosphate, utilized in folate and tetrahydrobiopterin biosynthesis. The structure of GTP cyclohydrolase II determined at 1.54-A resolution reveals both a different protein fold to GTP cyclohydrolase I and distinctive molecular recognition determinants for GTP; although in both enzymes there is a bound catalytic zinc. The GTP cyclohydrolase II.GMPCPP complex structure shows Arg(128) interacting with the alpha-phosphonate, and thus in the case of GTP, Arg(128) is positioned to act as the nucleophile for pyrophosphate release and formation of the proposed covalent guanylyl-GTP cyclohydrolase II intermediate. Tyr(105) is identified as playing a key role in GTP ring opening; it is hydrogen-bonded to the zinc-activated water molecule, the latter being positioned for nucleophilic attack on the guanine C-8 atom. Although GTP cyclohydrolase I and GTP cyclohydrolase II both use a zinc ion for the GTP ring opening and formate release, different residues are utilized in each case to catalyze this reaction step.

摘要

GTP环化水解酶II将GTP转化为2,5-二氨基-6-β-核糖基-4(3H)-嘧啶酮5'-磷酸、甲酸和焦磷酸,这是核黄素生物合成的第一步。核黄素在代谢中的重要作用以及高等真核生物中缺乏GTP环化水解酶II,使其成为一种潜在的新型选择性抗菌药物靶点。GTP环化水解酶II催化的整体反应与GTP环化水解酶I不同;后者将GTP转化为二氢新蝶呤三磷酸,用于叶酸和四氢生物蝶呤的生物合成。以1.54埃分辨率测定的GTP环化水解酶II的结构揭示了与GTP环化水解酶I不同的蛋白质折叠以及对GTP独特的分子识别决定因素;尽管两种酶中都有一个结合的催化锌。GTP环化水解酶II.GMPCPP复合物结构显示精氨酸(128)与α-膦酸酯相互作用,因此在GTP的情况下,精氨酸(128)的位置可作为焦磷酸释放和形成拟共价鸟苷酰-GTP环化水解酶II中间体的亲核试剂。酪氨酸(105)被确定在GTP开环中起关键作用;它与锌激活的水分子形成氢键,后者定位为对鸟嘌呤C-8原子进行亲核攻击。尽管GTP环化水解酶I和GTP环化水解酶II都使用锌离子进行GTP开环和甲酸释放,但在每种情况下都使用不同的残基来催化这一反应步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验