Suppr超能文献

铁硫活性位点中电子转移反应性的电子结构贡献:1. 电子弛豫的光电子能谱测定

Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 1. Photoelectron spectroscopic determination of electronic relaxation.

作者信息

Kennepohl Pierre, Solomon Edward I

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.

出版信息

Inorg Chem. 2003 Feb 10;42(3):679-88. doi: 10.1021/ic020330f.

Abstract

Electronic relaxation, the change in molecular electronic structure as a response to oxidation, is investigated in FeX(4)(-)(,1)(-) (X = Cl, SR) model complexes. Photoelectron spectroscopy, in conjunction with density functional methods, is used to define and evaluate the core and valence electronic relaxation upon ionization of FeX(4)(-). The presence of intense yet formally forbidden charge-transfer satellite peaks in the PES data is a direct reflection of electronic relaxation. The phenomenon is evaluated as a function of charge redistribution at the metal center (Deltaq(rlx)) resulting from changes in the electronic structure. This charge redistribution is calculated from experimental core and valence PES data using a valence bond configuration interaction (VBCI) model. It is found that electronic relaxation is very large for both core (Fe 2p) and valence (Fe 3d) ionization processes and that it is greater in Fe(SR)(4)(-) than in FeCl(4)(-). Similar results are obtained from DFT calculations. The results suggest that, although the lowest-energy valence ionization (from the redox-active molecular orbital) is metal-based, electronic relaxation causes a dramatic redistribution of electron density ( approximately 0.7ē) from the ligands to the metal center corresponding to a generalized increase in covalency over all M-L bonds. The more covalent tetrathiolate achieves a larger Deltaq(rlx) because the LMCT states responsible for relaxation are significantly lower in energy than those in the tetrachloride. The large observed electronic relaxation can make significant contributions to the thermodynamics and kinetics of electron transfer in inorganic systems.

摘要

在[FeX₄]²⁻(X = Cl,SR)模型配合物中研究了电子弛豫,即分子电子结构对氧化的响应。光电子能谱结合密度泛函方法用于定义和评估[FeX₄]²⁻电离时的内层和价层电子弛豫。光电子能谱数据中存在强烈但形式上禁止的电荷转移卫星峰是电子弛豫的直接反映。该现象作为由电子结构变化导致的金属中心电荷重新分布(Δq(rlx))的函数进行评估。这种电荷重新分布是使用价键组态相互作用(VBCI)模型从实验内层和价层光电子能谱数据计算得出的。发现对于内层(Fe 2p)和价层(Fe 3d)电离过程,电子弛豫都非常大,并且在[Fe(SR)₄]²⁻中比在[FeCl₄]²⁻中更大。从密度泛函理论(DFT)计算中也获得了类似的结果。结果表明,尽管最低能量的价层电离(来自氧化还原活性分子轨道)是基于金属的,但电子弛豫会导致电子密度从配体到金属中心的显著重新分布(约0.7ē),这对应于所有M - L键共价性的普遍增加。共价性更强的四硫醇盐实现了更大的Δq(rlx),因为负责弛豫的配体 - 金属电荷转移(LMCT)态的能量明显低于四氯化物中的那些态。观察到的大电子弛豫可以对无机系统中电子转移的热力学和动力学做出重大贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验