Suppr超能文献

铁硫蛋白中依赖簇的电荷转移动力学

Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.

作者信息

Mao Ziliang, Liou Shu-Hao, Khadka Nimesh, Jenney Francis E, Goodin David B, Seefeldt Lance C, Adams Michael W W, Cramer Stephen P, Larsen Delmar S

机构信息

Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States.

Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States.

出版信息

Biochemistry. 2018 Feb 13;57(6):978-990. doi: 10.1021/acs.biochem.7b01159. Epub 2018 Jan 24.

Abstract

Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.

摘要

利用五个铁硫簇研究了光诱导电荷转移动力学以及簇尺寸对动力学的影响

嗜热栖热菌红素氧还蛋白中的1Fe-4S簇、恶臭假单胞菌恶臭假单胞菌红素氧还蛋白中的2Fe-2S簇、固氮酶铁蛋白中的4Fe-4S簇、固氮酶钼铁蛋白中的8Fe-7S P簇和7Fe-9S-1Mo铁钼辅因子。激光激发促使铁硫簇跃迁到激发电子态,然后弛豫到较低能态。1Fe-4S、8Fe-7S和7Fe-9S-1Mo簇的电子弛豫寿命在皮秒时间尺度上,尽管钼铁蛋白的动力学是后两个簇动力学的混合。然而,2Fe-2S和4Fe-4S簇的寿命延长到了几纳秒。重组能与电子态密度(进而态间电子耦合)之间的竞争介导了电荷转移寿命,其中恶臭假单胞菌红素氧还蛋白的2Fe-2S簇和铁蛋白的4Fe-4S簇处于最佳状态,导致它们具有明显更长的寿命。它们的长寿命使它们成为长程电子转移以及作为其他光活化化学反应(如太阳能制氢)的外部光敏剂的最佳候选者。文中提出了可能促进这些电荷转移的潜在电子转移和空穴转移途径。

相似文献

1
Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.
Biochemistry. 2018 Feb 13;57(6):978-990. doi: 10.1021/acs.biochem.7b01159. Epub 2018 Jan 24.
4
Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.
Biochemistry. 2012 Oct 16;51(41):8071-84. doi: 10.1021/bi3006658. Epub 2012 Oct 4.
6
Electron transfer within nitrogenase: evidence for a deficit-spending mechanism.
Biochemistry. 2011 Nov 1;50(43):9255-63. doi: 10.1021/bi201003a. Epub 2011 Oct 11.
8
Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery.
J Am Chem Soc. 2014 Nov 19;136(46):16240-50. doi: 10.1021/ja507822j. Epub 2014 Nov 7.

引用本文的文献

1
Adaptive Restraints to Accelerate Geometry Optimizations of Large Biomolecular Systems.
J Comput Chem. 2025 May 5;46(12):e70127. doi: 10.1002/jcc.70127.
2
Biological materials formed by and their potential applications.
3 Biotech. 2020 Nov;10(11):475. doi: 10.1007/s13205-020-02463-3. Epub 2020 Oct 13.
3
Reduction of Substrates by Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5082-5106. doi: 10.1021/acs.chemrev.9b00556. Epub 2020 Mar 16.
4
Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical.
J Am Chem Soc. 2019 Oct 9;141(40):16117-16124. doi: 10.1021/jacs.9b08541. Epub 2019 Sep 26.

本文引用的文献

1
Ultrafast Charge-Transfer Dynamics in the Iron-Sulfur Complex of Rhodobacter capsulatus Ferredoxin VI.
J Phys Chem Lett. 2017 Sep 21;8(18):4498-4503. doi: 10.1021/acs.jpclett.7b02026. Epub 2017 Sep 7.
2
Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.
ChemSusChem. 2017 Mar 9;10(5):894-902. doi: 10.1002/cssc.201601523. Epub 2017 Feb 9.
3
Photolysis of Hi-CO Nitrogenase - Observation of a Plethora of Distinct CO Species using Infrared Spectroscopy.
Eur J Inorg Chem. 2011 May;2011(13):2064-2074. doi: 10.1002/ejic.201100029. Epub 2011 Mar 28.
4
Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
Science. 2016 Apr 22;352(6284):448-50. doi: 10.1126/science.aaf2091.
5
Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10920-5. doi: 10.1073/pnas.1512704112. Epub 2015 Jul 20.
6
Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics.
Nat Chem. 2014 Oct;6(10):927-33. doi: 10.1038/nchem.2041. Epub 2014 Aug 31.
7
Mechanism of nitrogen fixation by nitrogenase: the next stage.
Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27.
8
BLAST: a more efficient report with usability improvements.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33. doi: 10.1093/nar/gkt282. Epub 2013 Apr 22.
9
Unsensitized photochemical hydrogen production catalyzed by diiron hydrides.
J Am Chem Soc. 2012 Mar 14;134(10):4525-8. doi: 10.1021/ja211778j. Epub 2012 Feb 27.
10
Mechanism of Mo-dependent nitrogenase.
Methods Mol Biol. 2011;766:9-29. doi: 10.1007/978-1-61779-194-9_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验