Suppr超能文献

构象状态依赖的 prestin 阴离子结合:别构调节的证据。

Conformational state-dependent anion binding in prestin: evidence for allosteric modulation.

机构信息

Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

Biophys J. 2010 Feb 3;98(3):371-6. doi: 10.1016/j.bpj.2009.10.027.

Abstract

Outer hair cells boost auditory performance in mammals. This amplification relies on an expansive array of intramembranous molecular motors, identified as prestin, that drive somatic electromotility. By measuring nonlinear capacitance, the electrical signature of electromotility, we are able to assess prestin's conformational state and interrogate the effectiveness of anions on prestin's activity. We find that the affinity of anions depends on the state of prestin that we set with a variety of perturbations (in membrane tension, temperature, and voltage), and that movement into the expanded state reduces the affinity of prestin for anions. These data signify that anions work allosterically on prestin. Consequently, anions are released from prestin's binding site during expansion, i.e., during hyperpolarization. This is at odds with the extrinsic voltage sensor model, which suggests that prestin-bound intracellular anions are propelled deep into the membrane. Furthermore, we hypothesize that prestin's susceptibility to many biophysical forces, and notably its piezoelectric nature, may reflect anion interactions with the motor.

摘要

外毛细胞增强哺乳动物的听觉性能。这种放大依赖于广泛的跨膜分子马达,被鉴定为 prestin,驱动体细胞的电致伸缩。通过测量非线性电容,即电致伸缩的电信号,我们能够评估 prestin 的构象状态,并探究阴离子对 prestin 活性的影响。我们发现,阴离子的亲和力取决于我们用各种扰动(膜张力、温度和电压)设置的 prestin 状态,并且进入扩展状态会降低 prestin 对阴离子的亲和力。这些数据表明阴离子对 prestin 具有变构作用。因此,在扩展过程中(即超极化时),阴离子会从 prestin 的结合位点释放出来。这与外在电压传感器模型不一致,后者表明 prestin 结合的细胞内阴离子被推向膜的深处。此外,我们假设 prestin 对许多生物物理力的敏感性,特别是其压电性质,可能反映了阴离子与马达的相互作用。

相似文献

1
Conformational state-dependent anion binding in prestin: evidence for allosteric modulation.
Biophys J. 2010 Feb 3;98(3):371-6. doi: 10.1016/j.bpj.2009.10.027.
2
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Biophys J. 2016 Jun 7;110(11):2551-2561. doi: 10.1016/j.bpj.2016.05.002.
3
Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
Sci Rep. 2020 Apr 10;10(1):6222. doi: 10.1038/s41598-020-63201-6.
4
Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig.
J Physiol. 2003 Mar 15;547(Pt 3):873-91. doi: 10.1113/jphysiol.2002.036434. Epub 2003 Jan 31.
6
Prestin's anion transport and voltage-sensing capabilities are independent.
Biophys J. 2009 Apr 22;96(8):3179-86. doi: 10.1016/j.bpj.2008.12.3948.
8
Anion control of voltage sensing by the motor protein prestin in outer hair cells.
Biophys J. 2008 Nov 1;95(9):4439-47. doi: 10.1529/biophysj.108.134197. Epub 2008 Jul 25.
9
Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion.
Neuroscience. 2020 Apr 1;431:128-133. doi: 10.1016/j.neuroscience.2020.02.003. Epub 2020 Feb 13.

引用本文的文献

1
Chloride binding does not influence prestin motor speed at very high frequencies in the mouse outer hair cell.
Structure. 2025 Aug 7;33(8):1417-1424.e3. doi: 10.1016/j.str.2025.04.019. Epub 2025 May 21.
3
On the frequency response of prestin charge movement in membrane patches.
Biophys J. 2022 Jun 21;121(12):2371-2379. doi: 10.1016/j.bpj.2022.05.020. Epub 2022 May 20.
4
Single particle cryo-EM structure of the outer hair cell motor protein prestin.
Nat Commun. 2022 Jan 12;13(1):290. doi: 10.1038/s41467-021-27915-z.
5
The conformational cycle of prestin underlies outer-hair cell electromotility.
Nature. 2021 Dec;600(7889):553-558. doi: 10.1038/s41586-021-04152-4. Epub 2021 Oct 25.
6
Molecular mechanism of prestin electromotive signal amplification.
Cell. 2021 Sep 2;184(18):4669-4679.e13. doi: 10.1016/j.cell.2021.07.034. Epub 2021 Aug 13.
8
Comparative Molecular Dynamics Investigation of the Electromotile Hearing Protein Prestin.
Int J Mol Sci. 2021 Aug 2;22(15):8318. doi: 10.3390/ijms22158318.
9
Prestin amplifies cardiac motor functions.
Cell Rep. 2021 May 4;35(5):109097. doi: 10.1016/j.celrep.2021.109097.
10
Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
Sci Rep. 2020 Apr 10;10(1):6222. doi: 10.1038/s41598-020-63201-6.

本文引用的文献

1
Voltage and frequency dependence of prestin-associated charge transfer.
J Theor Biol. 2009 Sep 7;260(1):137-44. doi: 10.1016/j.jtbi.2009.05.019. Epub 2009 May 31.
2
Prestin's anion transport and voltage-sensing capabilities are independent.
Biophys J. 2009 Apr 22;96(8):3179-86. doi: 10.1016/j.bpj.2008.12.3948.
3
Fast electromechanical amplification in the lateral membrane of the outer hair cell.
Biophys J. 2009 Jan;96(2):739-47. doi: 10.1016/j.bpj.2008.10.015.
4
Anion control of voltage sensing by the motor protein prestin in outer hair cells.
Biophys J. 2008 Nov 1;95(9):4439-47. doi: 10.1529/biophysj.108.134197. Epub 2008 Jul 25.
5
Allosteric regulation and catalysis emerge via a common route.
Nat Chem Biol. 2008 Aug;4(8):474-82. doi: 10.1038/nchembio.98.
6
Membrane composition modulates prestin-associated charge movement.
J Biol Chem. 2008 Aug 15;283(33):22473-81. doi: 10.1074/jbc.M803722200. Epub 2008 Jun 20.
7
How membrane proteins sense voltage.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):323-32. doi: 10.1038/nrm2376.
8
Tuning of the outer hair cell motor by membrane cholesterol.
J Biol Chem. 2007 Dec 14;282(50):36659-70. doi: 10.1074/jbc.M705078200. Epub 2007 Oct 12.
9
Control of mammalian cochlear amplification by chloride anions.
J Neurosci. 2006 Apr 12;26(15):3992-8. doi: 10.1523/JNEUROSCI.4548-05.2006.
10
An anion antiporter model of prestin, the outer hair cell motor protein.
Biophys J. 2006 Jun 1;90(11):4035-45. doi: 10.1529/biophysj.105.073254. Epub 2006 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验