Suppr超能文献

Antioxidants significantly affect the formation of different classes of isoprostanes and neuroprostanes in rat cerebral synaptosomes.

作者信息

Montine Thomas J, Montine Kathleen S, Reich Erin E, Terry Erin S, Porter Ned A, Morrow Jason D

机构信息

Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

出版信息

Biochem Pharmacol. 2003 Feb 15;65(4):611-7. doi: 10.1016/s0006-2952(02)01607-6.

Abstract

Lipid peroxidation has been implicated in the pathogenesis of a number of diseases, including neurodegenerative disorders. Evidence that antioxidants can affect the clinical course of neurodegenerative diseases is limited. In the present study, we examined the ability of five common antioxidants or antioxidant combinations, alpha-tocopherol, gamma-tocopherol, ascorbic acid, GSH ethyl ester, and a combination of ascorbate and alpha-tocopherol, to modulate lipid peroxidation in peroxidizing rat cerebral synaptosomes, a well-characterized model of oxidant injury. In these studies, we quantified isoprostanes (IsoPs) derived from arachidonic acid as an index of whole tissue oxidation and neuroprostanes (NeuroPs) formed from docosahexaenoic acid as a marker of selective neuronal peroxidation. We report that these various antioxidants displayed markedly different capacities to inhibit IsoP and NeuroP formation with the most potent effects on IsoPs observed for ascorbate, GSH ethyl ester, and the alpha-tocopherol-ascorbate combination. alpha-Tocopherol was slightly less potent and gamma-tocopherol significantly less effective. The concentration-response relationships were significantly different for NeuroP formation with the antioxidants being significantly less potent than for IsoP generation. In particular, alpha-tocopherol did not inhibit NeuroP formation at concentrations up to 100 microM. We also determined that tocopherols, in particular alpha-tocopherol, act in vitro as reducing agents to convert IsoP and NeuroP endoperoxides to reduced F-ring compounds, a finding we have observed previously in vivo in brain. These studies are of importance because they have further defined the role of antioxidants to modulate the formation of lipid peroxidation products in peroxidizing brain tissue. In addition, they suggest that alpha-tocopherol may not be a particularly effective agent to inhibit oxidant stress in the terminal compartment of neurons in the central nervous system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验