Zeigler Mandy M, Doseff Andrea I, Galloway Michelle F, Opalek Judy M, Nowicki Philip T, Zweier Jay L, Sen Chandan K, Marsh Clay B
Dorothy M. Davis Heart and Lung Research Institute, the Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210-1252, USA.
J Biol Chem. 2003 Apr 11;278(15):12894-902. doi: 10.1074/jbc.M213125200. Epub 2003 Feb 3.
In the absence of survival factors, blood monocytes undergo spontaneous apoptosis, which involves the activation of caspase-3. Although nitric oxide can block caspase-3 activation and promote cell survival, it can also induce apoptosis. We hypothesized that nitrosothiols that promote protein S-nitrosylation would reduce caspase-3 activation and cell survival, whereas nitric oxide donors (such as 1-propamine 3-(2-hydroxy-2-nitroso-1-propylhydrazine (PAPA) NONOate and diethylamine (DEA) NONOate) that do not target thiol residues would not. Using human monocytes as a model, we observed that nitrosothiol donors S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine suppressed caspase-9 and caspase-3 activity and DNA fragmentation. In contrast, PAPA or DEA NONOate did not promote monocyte survival events and appeared to inhibit monocyte survival induced by macrophage colony-stimulating factor. The caspase-3-selective inhibitor DEVD-fluoromethyl ketone reversed DNA fragmentation events, and the caspase-9 inhibitor LEHD-fluoromethyl ketone reversed caspase-3 activity in monocytes treated with PAPA or DEA NONOate in the presence of macrophage colony-stimulating factor. These results were not caused by differences in glutathione levels or the kinetics of nitric oxide release. Moreover, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine directly blocked the activity of recombinant caspase-3, which was reversed by the reducing agent dithiothreitol, whereas PAPA or DEA NONOate did not block the enzymatic activity of caspase-3. These data support the hypothesis that nitrosylation of protein thiol residues by nitric oxide is critical for promoting the survival of human monocytes.
在缺乏生存因子的情况下,血液单核细胞会发生自发性凋亡,这涉及半胱天冬酶 - 3的激活。尽管一氧化氮可以阻断半胱天冬酶 - 3的激活并促进细胞存活,但它也能诱导凋亡。我们推测,促进蛋白质S - 亚硝基化的亚硝基硫醇会降低半胱天冬酶 - 3的激活和细胞存活,而不靶向硫醇残基的一氧化氮供体(如1 - 丙胺3 -(2 - 羟基 - 2 - 亚硝基 - 1 - 丙基肼(PAPA)亚硝酰基酯和二乙胺(DEA)亚硝酰基酯)则不会。以人类单核细胞为模型,我们观察到亚硝基硫醇供体S - 亚硝基谷胱甘肽和S - 亚硝基 - N - 乙酰青霉胺可抑制半胱天冬酶 - 9和半胱天冬酶 - 3的活性以及DNA片段化。相比之下,PAPA或DEA亚硝酰基酯并未促进单核细胞的存活事件,且似乎抑制了巨噬细胞集落刺激因子诱导的单核细胞存活。半胱天冬酶 - 3选择性抑制剂DEVD - 氟甲基酮可逆转DNA片段化事件,而半胱天冬酶 - 9抑制剂LEHD - 氟甲基酮可逆转在巨噬细胞集落刺激因子存在下用PAPA或DEA亚硝酰基酯处理的单核细胞中的半胱天冬酶 - 3活性。这些结果并非由谷胱甘肽水平差异或一氧化氮释放动力学所致。此外,S - 亚硝基谷胱甘肽和S - 亚硝基 - N - 乙酰青霉胺直接阻断重组半胱天冬酶 - 3的活性,该活性可被还原剂二硫苏糖醇逆转,而PAPA或DEA亚硝酰基酯并未阻断半胱天冬酶 - 3的酶活性。这些数据支持了以下假设:一氧化氮对蛋白质硫醇残基的亚硝基化对于促进人类单核细胞的存活至关重要。