Kneidinger Bernd, Larocque Suzon, Brisson Jean-Robert, Cadotte Nicolas, Lam Joseph S
Canadian Bacterial Diseases Network, University of Guelph, Department of Microbiology, Guelph, Ontario N1G 2W1, Canada.
Biochem J. 2003 May 1;371(Pt 3):989-95. doi: 10.1042/BJ20030099.
6-Deoxy-L-hexoses have been shown to be synthesized from dTDP-D-glucose or GDP-D-mannose so that the gluco/galacto-configuration is converted into the manno/talo-configuration, and manno/talo is switched to gluco/galacto. Our laboratory has been investigating the biosynthesis of 2-acetamido-2,6-dideoxy-L-hexoses in both Gram-positive and Gram-negative bacteria, and in a recent paper we described the biosynthesis of the talo (pneumosamine) and galacto (fucosamine) derivatives from UDP-D-N-acetylglucosamine a 2-acetamido sugar [Kneidinger, O'Riordan, Li, Brisson, Lee and Lam (2003) J. Biol. Chem. 278, 3615-3627]. In the present study, we undertake the task to test the hypothesis that UDP-D-N-acetylglucosamine is the common precursor for the production of 2-acetamido-2,6-dideoxy-L-hexoses in the gluco-, galacto-, manno- and talo-configurations. We present data to reveal the steps for the biosynthesis of the gluco (quinovosamine)- and manno (rhamnosamine)-configured compounds. The corresponding enzymes WbvB, WbvR and WbvD from Vibrio cholerae serotype O37 have been overexpressed and purified to near homogeneity. The enzymic reactions have been analysed by capillary electrophoresis and NMR spectroscopy. Our data have revealed a general feature of reaction cascades due to the three enzymes. First, UDP-D-N-acetylglucosamine is catalysed by the multi-functional enzyme WbvB, whereby dehydration occurs at C-4, C-6 and epimerization at C-5, C-3 to produce UDP-2-acetamido-2,6-dideoxy-L-lyxo-4-hexulose. Secondly, this intermediate is converted by the C-4 reductase, WbvR, in a stereospecific reaction to yield UDP-2-acetamido-L-rhamnose. Thirdly, UDP-2-acetamido-L-rhamnose is epimerized at C-2 to UDP-2-acetamido-L-quinovose by WbvD. Interestingly, WbvD is also an orthologue of WbjD, but not vice versa. Incubation of purified WbvD with UDP-2-acetamido-2,6-dideoxy-L-talose and analysing the reaction products by capillary electrophoresis revealed the same product peak as when WbjD was used. This sugar nucleotide is a specific substrate for WbjD and is a C-4 epimer of UDP-2-acetamido-L-rhamnose.
已证明6-脱氧-L-己糖是由dTDP-D-葡萄糖或GDP-D-甘露糖合成的,这样葡糖/半乳糖构型就会转变为甘露糖/塔罗糖构型,而甘露糖/塔罗糖构型又会转变为葡糖/半乳糖构型。我们实验室一直在研究革兰氏阳性菌和革兰氏阴性菌中2-乙酰氨基-2,6-二脱氧-L-己糖的生物合成,并且在最近的一篇论文中,我们描述了由UDP-D-N-乙酰葡糖胺(一种2-乙酰氨基糖)合成塔罗糖(肺炎糖胺)和半乳糖(岩藻糖胺)衍生物的过程[克内丁格、奥里奥丹、李、布里松、李和林(2003年)《生物化学杂志》278卷,3615 - 3627页]。在本研究中,我们承担了检验以下假设的任务:UDP-D-N-乙酰葡糖胺是生成葡糖、半乳糖甘露糖和塔罗糖构型的2-乙酰氨基-2,6-二脱氧-L-己糖通用前体。我们展示的数据揭示了葡糖(鸡纳糖胺)和甘露糖(鼠李糖胺)构型化合物生物合成的步骤。霍乱弧菌O37血清型的相应酶WbvB、WbvR和WbvD已被过量表达并纯化至接近均一状态。酶促反应已通过毛细管电泳和核磁共振光谱进行分析。我们的数据揭示了这三种酶导致的反应级联的一个普遍特征。首先,多功能酶WbvB催化UDP-D-N-乙酰葡糖胺,由此在C-4、C-6处发生脱水,在C-5、C-3处发生差向异构化,生成UDP-2-乙酰氨基-2,6-二脱氧-L-来苏糖-4-酮糖。其次,这种中间体在立体特异性反应中由C-4还原酶WbvR转化,生成UDP-2-乙酰氨基-L-鼠李糖。第三,UDP-2-乙酰氨基-L-鼠李糖在WbvD的作用下在C-2处发生差向异构化,生成UDP-2-乙酰氨基-L-鸡纳糖。有趣的是,WbvD也是WbjD的一个直向同源物,但反之则不然。用UDP-2-乙酰氨基-2,6-二脱氧-L-塔罗糖孵育纯化的WbvD,并通过毛细管电泳分析反应产物,结果显示与使用WbjD时具有相同的产物峰。这种糖核苷酸是WbjD的一种特异性底物,并且是UDP-2-乙酰氨基-L-鼠李糖的C-4差向异构体。