Suppr超能文献

使用小波变换对一名癫痫患者的脑电图记录进行分析。

Analysis of EEG records in an epileptic patient using wavelet transform.

作者信息

Adeli Hojjat, Zhou Ziqin, Dadmehr Nahid

机构信息

Departments of Biomedical Informatics, Centers for Biomedical Engineering and Cognitive Science, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, USA.

出版信息

J Neurosci Methods. 2003 Feb 15;123(1):69-87. doi: 10.1016/s0165-0270(02)00340-0.

Abstract

About 1% of the people in the world suffer from epilepsy and 30% of epileptics are not helped by medication. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities, and repeated patterns where other signal processing approaches fail or are not as effective. In this research, discrete Daubechies and harmonic wavelets are investigated for analysis of epileptic EEG records. Wavelet transform is used to analyze and characterize epileptiform discharges in the form of 3-Hz spike and wave complex in patients with absence seizure. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. The capability of this mathematical microscope to analyze different scales of neural rhythms is shown to be a powerful tool for investigating small-scale oscillations of the brain signals. Wavelet analyses of EEGs obtained from a population of patients can potentially suggest the physiological processes undergoing in the brain in epilepsy onset. A better understanding of the dynamics of the human brain through EEG analysis can be obtained through further analysis of such EEG records.

摘要

世界上约1%的人患有癫痫,30%的癫痫患者药物治疗无效。对脑电图(EEG)记录进行仔细分析能够为引发癫痫疾病的机制提供有价值的见解并加深理解。小波变换对于表示非平稳信号的各个方面特别有效,比如趋势、不连续性以及其他信号处理方法失效或效果不佳的重复模式。在本研究中,研究了离散Daubechies小波和谐波小波用于癫痫EEG记录的分析。小波变换用于分析和表征失神发作患者中以3赫兹棘慢复合波形式出现的癫痫样放电。通过对EEG记录进行小波分解,瞬态特征在时间和频率背景下都能被准确捕获和定位。这种数学显微镜分析不同尺度神经节律的能力被证明是研究脑信号小尺度振荡的有力工具。对一组患者的EEG进行小波分析可能揭示癫痫发作时大脑中正在进行的生理过程。通过对此类EEG记录的进一步分析,可以更好地通过EEG分析了解人类大脑的动态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验