用于处理脑电图记录相关反应的线性混合效应模型。

Linear mixed-effect models for correlated response to process electroencephalogram recordings.

作者信息

Meinardi Vanesa B, López Juan M Díaz, Fajreldines Hugo Diaz, Boyallian Carina, Balzarini Monica

机构信息

I.A.P Ciencias Humanas, Universidad Nacional de Villa María, Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina.

Centro de Investigación y Transferencia. UNVM, Arturo Jauretche 1555, 5900 Córdoba, Argentina.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):1197-1207. doi: 10.1007/s11571-023-09984-6. Epub 2023 Jun 19.

Abstract

A data set of clinical studies of electroencephalogram recordings (EEG) following data acquisition protocols in control individuals (Eyes Closed Wakefulness - Eyes Open Wakefulness, Hyperventilation, and Optostimulation) are quantified with information theory metrics, namely permutation Shanon entropy and permutation Lempel Ziv complexity, to identify functional changes. This work implement Linear mixed-effects models (LMEMs) for confirmatory hypothesis testing. The results show that EEGs have high variability for both metrics and there is a positive correlation between them. The mean of permutation Lempel-Ziv complexity and permutation Shanon entropy used simultaneously for each of the four states are distinguishable from each other. However, used separately, the differences between permutation Lempel-Ziv complexity or permutation Shanon entropy of some states were not statistically significant. This shows that the joint use of both metrics provides more information than the separate use of each of them. Despite their wide use in medicine, LMEMs have not been commonly applied to simultaneously model metrics that quantify EEG signals. Modeling EEGs using a model that characterizes more than one response variable and their possible correlations represents a new way of analyzing EEG data in neuroscience.

摘要

一组关于在对照个体中按照数据采集方案(闭眼清醒 - 睁眼清醒、过度换气和光刺激)进行脑电图记录(EEG)的临床研究数据集,使用信息论指标进行量化,即排列香农熵和排列莱普尔 - 齐夫复杂度,以识别功能变化。这项工作采用线性混合效应模型(LMEMs)进行验证性假设检验。结果表明,脑电图对于这两个指标都具有高度变异性,并且它们之间存在正相关。同时用于四种状态中每一种状态的排列莱普尔 - 齐夫复杂度和排列香农熵的均值彼此可区分。然而,单独使用时,某些状态的排列莱普尔 - 齐夫复杂度或排列香农熵之间的差异无统计学意义。这表明这两个指标联合使用比单独使用每个指标提供了更多信息。尽管线性混合效应模型在医学中广泛使用,但尚未普遍应用于同时对量化脑电图信号的指标进行建模。使用表征多个响应变量及其可能相关性的模型来对脑电图进行建模代表了神经科学中分析脑电图数据的一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索