Tasci Irem, Baygin Mehmet, Barua Prabal Datta, Hafeez-Baig Abdul, Dogan Sengul, Tuncer Turker, Tan Ru-San, Acharya U Rajendra
Department of Neurology, School of Medicine, Firat University, 23119 Elazig, Turkey.
Department of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum, Turkey.
Cogn Neurodyn. 2024 Oct;18(5):2193-2210. doi: 10.1007/s11571-024-10078-0. Epub 2024 Feb 28.
Electroencephalography (EEG) signals provide information about the brain activities, this study bridges neuroscience and machine learning by introducing an astronomy-inspired feature extraction model. In this work, we developed a novel feature extraction function, black-white hole pattern (BWHPat) which dynamically selects the most suitable pattern from 14 options. We developed BWHPat in a four-phase feature engineering model, involving multileveled feature extraction, feature selection, classification, and cortex map generation. Textural and statistical features are extracted in the first phase, while tunable q-factor wavelet transform (TQWT) aids in multileveled feature extraction. The second phase employs iterative neighborhood component analysis (INCA) for feature selection, and the k-nearest neighbors (kNN) classifier is applied for classification, yielding channel-specific results. A new cortex map generation model highlights the most active channels using median and intersection functions. Our BWHPat-driven model consistently achieved over 99% classification accuracy across three scenarios using the publicly available EEG pain dataset. Furthermore, a semantic cortex map precisely identifies pain-affected brain regions. This study signifies the contribution to EEG signal classification and neuroscience. The BWHPat pattern establishes a unique link between astronomy and feature extraction, enhancing the understanding of brain activities.
脑电图(EEG)信号提供有关大脑活动的信息,本研究通过引入一种受天文学启发的特征提取模型,架起了神经科学与机器学习之间的桥梁。在这项工作中,我们开发了一种新颖的特征提取函数——黑白洞模式(BWHPat),它能从14种选项中动态选择最合适的模式。我们在一个四阶段特征工程模型中开发了BWHPat,该模型包括多级特征提取、特征选择、分类和皮层图生成。在第一阶段提取纹理和统计特征,同时可调q因子小波变换(TQWT)辅助进行多级特征提取。第二阶段采用迭代邻域成分分析(INCA)进行特征选择,并应用k近邻(kNN)分类器进行分类,从而得出特定通道的结果。一个新的皮层图生成模型使用中位数和交集函数突出显示最活跃的通道。我们的BWHPat驱动模型使用公开可用的EEG疼痛数据集,在三种情况下始终实现了超过99%的分类准确率。此外,语义皮层图能精确识别受疼痛影响的脑区。这项研究标志着对EEG信号分类和神经科学的贡献。BWHPat模式在天文学和特征提取之间建立了独特的联系,增强了对大脑活动的理解。